
Имомов Ш. Ж. Нуритов И. Р. Усмонов К. Э.

СБОРНИК ЗАДАЧ ПО ОСНОВАМ ТЕРМОДИНАМИКИ И ТЕПЛОПЕРЕДАЧИ

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ ИНСТИТУТ ИНЖЕНЕРОВ ИРРИГАЦИИ И МЕХАНИЗАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА

Ш.Ж. Имомов И.Р. Нуритов К.Э. Усмонов

СБОРНИК ЗАДАЧ ПО ОСНОВАМ ТЕРМОДИНАМИКИ И ТЕПЛОПЕРЕДАЧИ

/ Учебное пособие /

Данное учебное пособие утверждено и рекомендовано к публикации в соответствии с приказом Министерства высшего и среднего специального образования Республики Узбекистан от 28 декабря 2020 года за № 676.

Данное учебное пособие выполнено на кафедре «Тракторы и автомобили» факультета «Механизация сельского хозяйства». Сборник содержит задачи, необходимые для практического усвоения курса «Основы термодинамики и теплопередачи». В каждой главе кроме задач приведены расчетные формулы и пояснения к ним. Все задачи имеют ответы, типовые задачи приведены с решениями.

пособие Учебное предназначено студентов следующих хозяйства», направлений образования: «Механизация сельского «Механизация водохозяйственных И мелиоративных работ», «Электроэнергетика» хозяйстве), (B водном «Автоматизация электрификации сельского хозяйства», «Снабжение энергии сельского и водного хозяйства», «Техника безопасности и охрана труда» и другие.

Составители: Имомов Ш. Ж.-д.т.н., профессор.

Нуритов И.Р.- к.т.н., доцент.

Усмонов К.Э.- старший преподаватель.

Рецензенты: Холмуродов Т.Н.— Ташкентский Государственный Аграрный Университет, кафедра «Механизация сельскохозяйственного производства» к.п.н., доцент.

Шаймарданов Б.П.-д.т.н., профессор.

Ш.Ж. Имомов, И.Р. Нуритов, К.Э. Усмонов / Сборник задач по основам термодинамики и теплопередачи / Учебное пособие— Т.:ТИИИМСХ. 2020.- 120 стр.

©. Ташкентский институт инженеров ирригации и механизации сельского хозяйства (ТИИИМСХ), 2020 г. ВВЕДЕНИЕ

Развитие независимой Республики Узбекистан непосредственно связано и зависит от уровня подготовки и качества полученных знаний будущих специалистов с высшим образованием.

Современное общество и прогресс его развития невозможно представить без использования различного вида энергии. Первоначальный вид энергии — тепловая энергия, а остальные виды энергии являются производными от этой энергии.

Рациональное использование энергетических ресурсов Республики Узбекистан, тепловых источников в сельском и водном хозяйстве, задачи их экономической эффективности, экологической защите окружающей среды, а также исследования в области научно - технических достижений, в основном, возлагаются на инженеров.

Учебные пособия предназначены для направлений бакалавриата 5430100-«Механизация сельского хозяйства», 5450300-«Механизация водохозяйственных и мелиоративных работ», 5310200-«Электроэнергетика» (в водном хозяйстве), 5430200-«Автоматизации и электрификации сельского хозяйства», 5430500-«Снабжение энергии сельского и водного хозяйства», 5640200-«Техника безопасности и охрана труда» и другие.

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

І.Параметры состояния газа

Величины, характеризующие тело в данном состоянии, **называются параметрами** состояния. Различают *термические* и *калорические* параметры состояния. Чаще всего состояние тела определяется следующими параметрами:

- Удельным объемом 9
- Давлением Р
- Температурой Т

І. Удельный объем g- тела представляет собой объем единицы его массы. В технической термодинамике за единицу массы принимают килограмм (κz), за единицу объема - кубический метр (M^3). Следовательно, удельный объем равен объему в кубических метрах одного килограмма вещества.

Если V — объем в M^3 , занимаемый телом массой в М κ г, то удельный объем

$$\mathbf{S} = \frac{\mathbf{V}}{\mathbf{M}} \quad \mathbf{M}^3 / \kappa 2 \tag{1}$$

Величина, обратная удельному объему

$$\frac{1}{9} = \rho = \frac{M}{V}, \kappa \varepsilon / M^3(2)$$

представляет собой массу единицы объема и носит название **плотности.** Таким образом, удельный объем измеряют в $m^3/\kappa z$, а плотность - в $\kappa z/m^3$. Из уравнения (2) следует, что

$$V = M\mathcal{G} = \frac{M}{\rho}, \quad \hat{i}^{3} \qquad \qquad M = \rho V = \frac{V}{\mathcal{G}}, \quad \kappa \Gamma$$
(3)

2. Давление **P** - измеряют силой, приходящейся на единицу поверхности. Так как за единицу силы принимают 1 ньютон, а за единицу поверхности квадратный метр, то давление измеряют в ньютонах на квадратный метр (H/m^2). Во всех термодинамических уравнениях пользуются этой единицей, и поэтому в применяемые формулы следует подставлять числовое значение давление в H/m^2 . Эта единица давления принята в (СИ) и называется паскалем (Па). Наряду с паскалем в технике употребляются и более крупные единицы – кило Паскаль (кПа), равный 10^3 Па, и мега Паскаль (МПа), равный 10^6 Па.

Давление подразделяют на абсолютное P, атмосферное P_a , избыточное P_u и вакуумметрическое P_B .

Приборы для измерения давления (манометры, барометры, вакуумметры) показывают избыточное давление.

Если абсолютное давление $P \succ P_a$, то избыточное давление равно разности между абсолютным давлением измеряемой среды и атмосферным давлением, т.е. $P_u = P - P_a$. Если $P \prec P_a$, то избыточное давление равно $P_u = P_a - P_a$.

3. Температура Т - характеризует степень нагретости тела. Ее измеряют **либо** по термодинамической температурной шкале, либо по международной практической температурной шкале.

Температуру по международной практической температурной шкале, отсчитываемую от 0°С, обозначают через t, а температуру по абсолютной шкале, отсчитываемую от температуры абсолютного нуля, обозначают через Т и называют абсолютной температурой.

Из сделанных определений вытекает зависимость

$$T^{\circ}K = t^{\circ}C + 273.15$$
 (4)

Пример 1.

Определить количество (массу) нефти, находящейся в цилиндрическом резервуаре диметром D=8 м и высотой H=6 м, если плотность нефти составляет $\rho=850$ кг/м 3 .

Решение:

1. Находим объем резервуара по формуле:

$$V = \frac{\pi D^2}{4} \cdot H = 0.785D^2 \cdot H = 0.785 \cdot 8^2 \cdot 6 = 301,44 \quad M^3$$

2. Находим массу нефти по формуле (3):

$$M = \rho V = 850 \cdot 301,44 = 256225$$
 кг (иил 256,224тт

Пример 2.

Ртутный вакуумметр, присоединенный к конденсатору, показывает разрежение $P_{\rm s}$ =280 мм рт. ст. при температуре t= $40^{\rm o}$ C. Давление атмосферы по ртутному барометру $P_{\rm amm}$ =760 мм рт.ст. при температуре t= $30^{\rm o}$ C. Определить абсолютное давление в конденсаторе.

Решение:

Предварительно приведем показания ртутных приборов к $0^{\circ}C$: $P_{\rm s}=280(1\text{-}0,000172\cdot40)=278,0736$ мм рт. ст.=37073 Па (0,37073 бар); $P_{\rm o}=760(1\text{-}0,000172\cdot30)=755,3184$ мм рт. ст.=100701 Па (1,007 бар); $P=P_{\rm o}-P_{\rm s}=100701\text{-}37073=63628$ Па= 63,63 кПа (0,6363 бар).

П. Уравнение состояния

Для равновесной термодинамической системы существует функциональная связь между термическими параметрами, называемая термическим уравнением состояния.

Характеристическое уравнение идеального газа или уравнение состояния связывает между собой основные параметры состояния - давление, объем и температуру - и может быть представлено следующими уравнениями:

$$PV = MRT (5)$$

Для 1 кг газа

$$PV = MR \tag{6}$$

где, R - газовая постоянная, Дж/($\kappa r \cdot K$)

Если в уравнении (5 заменить \emph{m} на μ , где μ - молярная масса газа, а также учесть, что $V\mu = \mu \upsilon$, получим уравнение Клапейрона — Менделеева

$$pV_{\mu} = R_{\mu}T \tag{7}$$

где, V_{μ} - молярный объем рабочего тела, m^3 /кмоль; при нормальных физических условиях $V_{\mu}=22.4~m^3$ /кмоль; $R_{\mu}=\mu R$ - универсальная газовая постоянная.

Если уравнение (7) записать для нормальных физических условий, получим

$$R_{\mu} = \frac{pV\mu}{T} = 101325 \cdot 22,4/273,15 = 8314$$
Дж/(кмоль·К)

Газовая постоянная 1 кг конкретного рабочего тела будет равна

$$R = \frac{8314}{\mu} \tag{8}$$

Пример 3.

Сосуд емкостью V=10 м³ заполнен 25 кг углекислоты. Определить абсолютное давление в сосуде, если температура в нем $t=27^{0}C$

<u>Решение:</u>

Из характеристического уравнения (5)

$$PV = MRT$$

имеем

$$P = \frac{MRT}{V} = \frac{25 \cdot 8314 \cdot 300}{44 \cdot 10} = 141700 \frac{H}{M^2} = 1,4176ap$$

Задача 1.

16 кг воздуха находится под давлением P=0,24 МПа при температуре $t=36^{\circ}$ С. Найти объём воздуха при данных условиях.

Задача 2.

В сосуде объемом 60 M^3 находится газ карбонат ангидрида (CO_2) при $t=17^0$ С и давлении P=7,5 МПа. Найти массу газа.

Задача 3.

Всосуде объемом 45000 литр находится газ при t=17 °C, массой M=66 кг, под давлением P=1,7 МПа. Найти вид газа находящееся в сосуде.

Задание 1.

В баллоне объёмом V литр находится газ давлением P_1 МПа и при t_1 °C. После использование некоторой части газа давление стало P_2 МПа и температура t_2 °C. Найти массу использованного газа.

Данные для решения задачи приведены в таблице 1. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

таблица 1 Таблица данных для решения задания.

Последняя	Газ	V,	$P_1M\Pi$	t_1 ,	Предпос-	P_2	t_2
цифра		Л	a	$^{\circ}\mathrm{C}$	ледняя	МПа	°C
шифра					цифра		
0	CO_2	60	0,8	27	0	0,6	20
1	воздух	110	1,2	54	1	0,4	18
2	O_2	20	7,0	85	2	0,7	8
3	CO	70	4,3	11	3	1,4	4
4	N_2	20	2,0	90	4	0.9	40
5	$\mathrm{CH_4}$	140	0,6	21	5	0.2	7
6	O_2	10	3,2	34	6	1,7	18
7	N_2	40	1,0	85	7	0,5	42
8	H_3	90	1,8	36	8	1,0	20
9	SO_2	200	9,0	40	9	4.5	25

Контрольные вопросы

- 1. Что изучает термодинамика?
- 2. Что называется параметром состояния вещества?
- 3. Что называется абсолютной температурой?
- 4. Определение удельного объема и плотности газа.
- 5. Различие между абсолютным и манометрическим (избыточным) давлением.

Ш. Газовые смеси

Состав газовой смеси определяется количеством каждого из газов, входящих в смесь, и может быть задан массовыми или объемными долями.

Массовая доля определяется отношением массы отдельного газа, входящего в смесь, к массе всей смеси:

$$m_1 = \frac{M_1}{M};$$
 $m_2 = \frac{M_2}{M};$ $m_3 = \frac{M_3}{M}, \dots, m_n = \frac{M_n}{M};$

где, M_1 , M_2 , M_3 , . M_n -массы отдельных газов и M- масса всей смеси.

Объемной долей газа называют отношение объема каждого компонента, входящего в смесь, к объему всей газовой смеси при условии, что объем каждого компонента отнесен к давлению и температуре смеси (приведенный объем):

$$r_1 = \frac{V_1}{V}, \quad r_2 = \frac{V_2}{V}, \quad r_3 = \frac{V_3}{V}, \quad \dots \quad r_n = \frac{Vn}{V},$$

где $V_1, V_2, V_3 \dots, V_n$ — приведенные объемы компонентов газов, входящих в смесь;

V - общий объем газовой смеси.

Очевидно, что

$$M_1 + M_2 + M_3 + \dots + M_n = M$$

 $m_1 + m_2 + m_3 + \dots + m_n = 1$

а также

$$V_1 + V_2 + V_3 + \dots + V_n = V$$

 $r_1 + r_2 + r_3 + \dots + r_n = 1$

Для перевода

массовых долей в объемные пользуются формулой

$$r_i = \frac{\frac{m_i}{\mu_i}}{\sum_{1}^{n} \frac{m_i}{\mu_i}} \tag{9}$$

Перевод объемных долей в массовые производится по формуле

$$m_i = \frac{r_i \mu_i}{\sum_{i=1}^{n} r_i \mu_i} \tag{10}$$

Плотность смеси определяется из выражения

$$\rho_{\rm cm} = \sum_{1}^{n} r_i \rho_i \,, \qquad \text{K}\Gamma/\text{M}^3$$

или, если известен массовый состав, по формуле

$$\rho_{\scriptscriptstyle CM} = \frac{1}{\sum_{i=1}^{n} \frac{m_{i}}{\rho_{i}}}, \qquad \text{K}\Gamma/M^{3}$$
 (12)

Удельный объем смеси представляет величину, обратную P_{cm} ; поэтому, если дан объемный состав смеси, то

$$\theta_{cM} = \frac{1}{\sum_{i=1}^{n} r_{i} \rho_{i}}, \qquad M^{3} / \kappa z \qquad (13)$$

Если же известен массовый состав, то

$$\mathcal{G}_{\scriptscriptstyle CM} = \sum_{i}^{n} \frac{m_{i}}{\rho_{i}}, \qquad \qquad M^{3} / \kappa \mathcal{E}$$
 (14)

Из уравнения (11) легко получается значение так называемой кажущейся молекулярной массы газовой смеси

$$\mu_{\scriptscriptstyle CM} = \sum_{1}^{n} r_{i} \mu_{i} \tag{15}$$

или через массовый состав

$$\mu_{\rm cm} = \frac{1}{\sum_{i=1}^{n} \frac{m_i}{\mu_i}} \tag{16}$$

Газовую постоянную смеси газов ($R_{\text{см}}$) можно выразить либо через газовые постоянные отдельных компонентов, входящих в смесь, либо через кажущуюся молекулярную массу смеси

$$R_{\scriptscriptstyle \mathsf{CM}} = \sum_{i=1}^{n} m_{i} R_{i}$$
 Дж/(кг · град) (17)

ИЛИ

$$R_{_{CM}} = \frac{8314}{\mu_{_{i}}} = \frac{8314}{\sum_{i}^{n} r_{_{i}} \mu_{_{i}}},$$
 дж/(кг·град) (18)

Связь между давлением газовой смеси и парциальными давлениями отдельных компонентов, входящих в смесь, устанавливается следующей зависимостью (закон Дальтона), легко получаемой из основного уравнения кинетической теории газов:

$$P = P_1 + P_2 + P_3 + \dots + P_n \tag{19}$$

где, P- общее давление газовой смеси; $P_1, P_2 \dots, P_n$ - парциальные давления в смесь.

Связь между давлением газовой смеси и парциальными давлениями отдельных компонентов, входящии

Формулы для расчета газовых смесей

Задание состава смеси	Перевод из одного состава в другой	Плотность и удельный объем смеси	Кажущаяся молекулярная масса смеси	Газовая постоянная смеси	Парциальное давлениние
Массовыми долями	$r_i = \frac{\frac{m_i}{\mu_i}}{\sum_{1}^{n} \frac{m_i}{\mu_i}}$	$\mathcal{G}_{cm} = \frac{1}{\sum_{1}^{n} r_{i} \rho_{i}}$ $\rho_{cm} = \frac{1}{\sum_{1}^{n} \frac{m_{i}}{\rho_{i}}}$	$\mu_{\text{cm}} = \frac{1}{\sum_{1}^{n} \frac{m_{i}}{\mu_{i}}}$	$R_{\rm cox} = \sum_{1}^{n} m_i R_i$	$P_i = m_i rac{R_i}{R_{\mathrm{cm}}} P$
Объемными долями	$m_i = \frac{r_i \mu_i}{\sum_{1}^{n} r_i \mu_i}$	$egin{aligned} egin{aligned} eta_{\mathrm{cm}} &= \sum_{1}^{n} r_{i} ho_{i} \ & & \\ eta_{\mathrm{cm}} &= rac{1}{\sum_{1}^{n} r_{i} ho_{i}} \end{aligned}$	$\mu_{c_{\mathcal{M}}} = \sum_{1}^{n} r_{i} \mu_{i}$	$R_{cm} = \frac{8314}{\sum_{i=1}^{n} r_i \mu_i}$	$P_i = \operatorname{Pr_i}$

их в смесь, устанавливается следующей зависимостью (закон Дальтона), легко получаемой из основного уравнения кинетической теории газов:

$$P = P_1 + P_2 + P_3 + \dots + P_n \tag{19}$$

где, Р- общее давление газовой смеси;

 $P_{1}, P_{2} \dots, P_{n}$ - парциальные давления в смесь.

Парциальные давления определяются проще всего, если известны объемные доли отдельных компонентов, входящих в смесь:

$$P_1 = Pr_1$$
, $P_2 = Pr_2$ и т. д.

или вообще

$$P_i = \Pr_i \tag{20}$$

где, P_i - парциальное давление любого газа, входящего в смесь. Если известны массовые доли, то парциальное давление любого газа, входящего в смесь, определяется из формулы

$$P_i = m_i \frac{R_i}{R_{cm}} P$$

В таблице дана сводка формул, применяемых при расчетах газовых смесей.

Пример 4.

Смесь газов состоит из водорода и окиси углерода. Массовая доля водорода $m_{\mu_2}=6,67$ %.

Определить газовую постоянную смеси и ее удельный объем при нормальных условиях.

Решение:

Из уравнения (17)

$$R_{\text{\tiny CM}} = \sum_{i=1}^{n} m_i R_i = m_1 R_1 + m_2 R_2 = 0,0667 \cdot 4124 + 0,9333 \cdot 296,8 = 552$$
 Дж/(кг · град)

Yдельный объем газовой смеси найдем из характеристического уравнения PV = RT:

$$\theta_H = \frac{RT_H}{p_H} = \frac{552 \cdot 273}{\frac{760}{750} \cdot 10^5} = 1,49 \text{ m}^3 / \kappa \epsilon$$

Задача 4.

Атмосферный воздух имеет примерно следующий массовый состав:

$$O_2=23,2$$
 %, $N_2=76,8$ %

Определить объемный состав воздуха, его газовую постоянную, кажущуюся молекулярную массу и парциальные давления кислорода и азота, если давление воздуха по барометру B=760 *мм.рт.ст* .

Задача 5.

Массовый состав смеси следующий:

$$H_2 = 8.4 \%$$
, $CO_2 = 17 \%$, $O_2 = 48 \%$, $N_2 = 26.6 \%$

Определить газовую постоянную, кажущуюся молекулярную массу и объемные доли.

Задание 2.

В емкости объемом V м³находится газовая смесь, объемный состав которой $r_{H2,\,\%}$, $r_{CO,\,\%}$, $r_{CO2,\,\%}$, $r_{N2,\,\%}$, $r_{SO2,\,\%}$ при давлении Р МПа и температуре t^{o} С. Определить кажущуюся молекулярную массу, массовые доли газов, удельную газовую постоянную, массу газовой смеси, парциальные давления газов.

Данные для решения задачи приведены в таблице3. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

Таблица данных для решения задания.

Последняя	V	P	t	Предпоследняя	r_{H2}	r_{CO}	r_{CO2}	r_{N2}	r_{SO2}
цифра	\mathbf{M}^3	МПа	^{0}C	цифра	%	%	%	%	%
шифра				шифра					
0	200	0,10	15	0	7,0	27,6	2,0	4,8	58,6
1	220	0,15	17	1	45,0	22,5	7,0	13,5	12,0
2	240	0,20	20	2	20,0	20,0	15,0	30,0	15,0
3	230	0,25	27	3	57,0	6,0	23,0	2,0	12,0
4	210	0,30	0	4	50,0	18,0	2,0	10,0	20,0
5	180	0,40	10	5	48,0	10,0	5,0	5,0	32,0
6	160	0,10	12	6	30,0	15,0	9,5	5,5	40,0
7	140	0,20	25	7	19,5	18,0	10,5	5,0	47,0
8	170	0,35	29	8	9,5	10,5	15,5	10,0	54,5
9	150	0,45	18	9	14,5	22,5	18,5	6,5	38,0

Контрольные вопросы

- 1. Что такое газовая смесь?
- 2. Как определяются массовая, мольная концентрации вещества?
- 3. Что называется киломолем газа?
- 4. Что такое закон Дальтона? Как определяется парциальное давление компонента смеси?
- 5. Каким уравнением определяется средняя молярная масса вещества?
- 6. Какая существует зависимость между удельным объемом, плотностью, молярной массой и удельной газовой постоянной?

IV. Теплоемкость газов

Tеплоемкостью называют количество тепла, которое необходимо сообщить телу (газу), чтобы повысить температуру какой-либо его количественной единицы на 1^{0} С.

В зависимости от выбранной количественной единицы различают мольную теплоемкость [μc - $\kappa Дж/(кмоль \cdot град)$], массовую теплоемкость [c- $\kappa Дж/(кмоль \cdot град)$] и объемную теплоемкость [c- $\kappa Дж/(кмоль \cdot град)$].

Так как в 1 M^3 газа могут содержаться, в зависимости от параметров его состояния, разные количества газа, принято относить 1 M^3 газа к нормальным условиям ($p = 760 \, \text{мм. рт. ст.}$ и $t = 0 \, ^{\circ}$ C). Поэтому в дальнейшем изложении

объемная теплоемкость будет относиться к массе газа, заключенной в $1 m^3$ его при нормальных условиях.

Для измерения количества тепла широко пользуются также внесистемной единицей тепла-килокалорией (*ккал*). При пользовании ею μ *с* измеряется в *ккал/(кмоль/град)*, *с-вккал/(кг · град)* и *с'-в ккал/(м³ · град)*. Пересчет *кДжс* в *ккал* и обратно производится по соотношениям:

$$1 \ \kappa \kappa \alpha \pi = 4,1868 \ \kappa \Delta \kappa ;$$

 $1 \ \kappa \Delta \kappa \kappa = 0,239 \ \kappa \kappa \kappa \alpha \pi.$

Для определения значений перечисленных выше теплоемкостей достаточно знать величину одной какой- либо из них. Удобнее всего иметь величину мольной теплоемкости. Тогда массовая теплоемкость определяется из выражения

$$c = \frac{\mu c}{\mu}$$
, (21)

а объемная теплоемкость получается равной

$$c' = \frac{\mu c}{22.4}. (22)$$

Объемная и массовая теплоемкости связаны между собой зависимостью

$$c' = c\rho_{\mu}$$

где, $\rho_{_{\scriptscriptstyle H}}$ — плотность газа при нормальных условиях.

Теплоемкость газа зависит от его температуры. Поэтому признаку различают *среднюю и истинную теплоемкость*.

Если q— количество тепла, сообщаемого единице количества газа (или отнимаемого от него) при изменении температуры газа от t_1 до t_2 (или, что то же, от T_1 до T_2), то величина

$$c_m = \frac{q}{t_2 - t_1} \tag{23}$$

представляет собой *среднюю теплоемкость* в пределах t_1 - t_2 . Предел этого отношения, когда разность температур стремится к нулю, называют *истинной теплоемкостью*. Аналитически последняя определяется как

$$c = \frac{dq}{dt}.$$

Теплоемкость идеальных газов зависит не только от их температуры, но и от их атомности и характера процесса. Теплоемкость реальных газов зависит от их природных свойств, характера процесса, температуры и давления.

Для газов особо важное значение имеют следующие два случая нагрева (охлаждения):

- 1) изменение состояния при постоянном объеме;
- 2) изменение состояния при постоянном давлении.

Обоим этим случаям соответствуют различные значения теплоемкостей. Таким образом, различают истинную и среднюю теплоемкости:

- а) мольную при постоянном объеме (μc_v и μc_{vm}) и постоянном давлении (μ с_P и μc_{pm});
- б) массовую при постоянном объеме (c_v и c_{vm}) и постоянном давлении (c_p и c_{pm});
- в) объемную при постоянном объеме (c'_v и c'_{vm}) и постоянном давлении (c'_p и c'_{vm}).

Между мольными теплоемкостями при постоянном давлении и постоянном объеме существует следующая зависимость:

$$\mu c_p - \mu c_v = \mu R \approx 8,314 \ \kappa \text{Дж/(кмоль} \cdot град) =$$

$$= 1,986 \ \kappa \kappa a \pi / (\kappa m o \pi \cdot г p a d) \qquad (24)$$

Для приближенных расчетов и при невысоких температурах можно принимать следующие значения мольных теплоемкостей (таблица 4)

Приближенные значения мольных теплоемкостей при постоянном объеме и постоянном давлении (c = const)

таблица 4 Значения мольных теплоемкостей.

Газы	μc_{ν}	μc_p	μc_{ν}	μc_p
	в кДж/(км	оль •град)	в ккал/(кма	оль•град)
Одноатомные	12,56	20,93	3	5
Двухатомные	20,93	29,31	5	7
Трех- и многоатомные	29,31	37,68	7	9

Втехнической термодинамике большое значение имеет отношение теплоемкостей при постоянном давлении и постоянном объеме, обозначаемое буквой k.

$$k = \frac{\mu c_p}{\mu c_\sigma} = \frac{c_p}{c_\sigma}$$

Если принять теплоемкость величиной постоянной, то на основании данных таблицы 4 получаем: для одноатомных газов k=1,67; для двухатомных газов k=1,4; для трех- и многоатомных газов k=1,29.

Теплоемкость газов изменяется с изменением температуры, причем эта зависимость имеет криволинейный характер. В таблицах IV-XI (см. приложения) приведены величины теплоемкостей для наиболее часто встречающихся в теплотехнических расчетах двух- и трехатомных газов.

При пользовании таблицами значения истинных теплоемкостей, а также средних теплоемкостей в пределах от 0° до tберутся непосредственно из этих таблиц, причем в необходимых случаях производится интерполирование.

Для вычисления количества тепла, которое необходимо затратить в процессе нагревания 1 κz газа в интервале температур от t_1 до t_2 , пользуются формулой

$$q = (c_m)_{t_1}^{t_2} (t_2 - t_1) = c_{m_2} t_2 - c_{m_1} t_1$$
(25)

где C_{m1} и C_{m2} — соответственно средние теплоемкости в пределах от 0° до t_1 и от 0° до t_2 .

Из формулы (25) легко получить выражения для определения количества тепла, затрачиваемого в процессе при постоянном объеме и в процессе при постоянном давлении.

Имеем

$$q_{v} = C_{vm2} t_2 - C_{vm1} t_1 \tag{26}$$

И

$$q_p = C_{pm2} t_2 - C_{pm1} t_1 \tag{27}$$

Если в процессе участвуют M $\kappa \varepsilon$ или V_H M^3 газа, то подсчет количества тепла производится по формулам:

$$Q_{v} = M (C_{vm2} t_2 - C_{vm1} t_1) = V_H (C_{vm2} t_2 - C_{vm1} t_1)$$
(28)

И

$$Q_{p} = M (C_{pm2} t_{2} - C_{pm1} t_{1}) = V_{H} (C_{pm2} t_{2} - C_{pm1} t_{1})$$
(29)

Нелинейную зависимость истинной теплоемкости от температуры представляют обычно уравнением вида

$$C = a + bt + dt^2$$

где а, b иd — величины, постоянные для данного газа.

Часто в теплотехнических расчетах нелинейную зависимость теплоемкости от температуры заменяют близкой к ней линейной зависимостью. В этом случае истинная теплоемкость определяется из уравнения

$$c = a + bt$$

а для определения средней теплоемкости при изменении температуры от t_t до t_2 пользуются уравнением

$$C_m = a + \frac{b}{2}(t_1 + t_2) \tag{30}$$

где a и b — постоянные для данного газа.

Для средней $m\underline{enлoemkocmu}$ в пределах 0° — t эта формула принимает вид

$$C_m = a + \frac{b}{2}t$$

Теплоемкость газовой смеси определяется на основании следующих формул:

массовая теплоемкость смеси

$$C_{\scriptscriptstyle CM} = \sum_{1}^{n} m_i c_1 \tag{31}$$

объемная теплоемкость смеси

$$C_{\scriptscriptstyle CM} = \sum_{1}^{n} r_i c_1 \tag{32}$$

мольная теплоемкость смеси

$$\mu C_{\scriptscriptstyle CM} = \sum_{1}^{n} r_{i} \mu c_{1} \tag{33}$$

Пример 5.

Какое количество теплоты необходимо подвести к воздуху в закрытом сосуде объемом $V=0.5~{\rm M}^3$, если начальная температура $t_1=100~{\rm e}$ °C, давление $P_1=300~{\rm MHa}$, а конечная температура $t_2=500~{\rm e}$?

Определить также массу воздуха и конечное давление.

Решение:

Массу воздуха определяем из уравнения состояния (5):

$$M = \frac{PV}{RT} = \frac{300000 \cdot 0.5}{287 \cdot 373} = 1.4 \kappa c$$

Удельную теплоемкость воздуха определяем по таблица IV приложения:

$$\overline{c_v}\Big|_{t_1}^{t_2} = (\overline{c_v}\Big|_0^{t_2} t_2 - \overline{c_v}\Big|_0^{t_1} t_1)/(t_2 - t_1) = (0.7193 \cdot 500 - 0.6632 \cdot 100)/400 = 0.733 \text{кДжс}/(\text{кг} \cdot \text{K})$$

$$0.76$$

Если считать задачу при постоянной удельной теплоемкости по таблицу 4, то получим

$$c_v = \frac{\mu c_v}{\mu} = \frac{20.93}{29} = 0.72 \, \text{lkДж}/(\kappa \epsilon \cdot K)$$

Если считать удельную теплоемкость постоянной величиной, то ошибка составляет

$$(0,733-0,721) \cdot 100/0,733=1,6\%$$

Количество подведенной теплоты

$$Q_{v} = m\overline{c_{v}}\Big|_{t_{1}}^{t_{2}} \quad (t_{2} - t_{1}) = 1, 4 \cdot 0,733 \cdot 400 = 412$$
кДж

Конечное давление определяем по закону Гей-Люссака:

$$P_2 = \frac{P_1 \cdot T_2}{T_1} = \frac{300 \cdot 773}{373} = 623 \ \kappa \Pi a$$

Задача 6.

Определить значение объемной теплоемкости кислорода при постоянном объеме и постоянном давлении, считая c=const.

Задача 7.

Найти количество тепла, необходимое для нагрева 1m^3 (при нормальных условиях) газовой смеси состава $r_{\text{CO2}}=14,5\%$, $r_{\text{O2}}=6,5\%$, $r_{\text{N2}}=79\%$ от 200 до $1200~^{0}\text{C}$ при P=constu нелинейной зависимости теплоемкости от температуры.

Задача 8.

В сосуде объемом 300 л находится кислорода при давлении P_1 = 0,2 МПа и температуре t_1 =20 °C.

Какое количество тепла необходимо подвести, чтобы температура кислорода повысилась до $t_2 = 300$ °C? Какое давление установится при этом сосуде? Зависимость теплоемкости от температуры принять нелинейной.

Задание 3.

В баллоне объемом V находится газ при давлении P_1 и температуре t_1 . После охлаждения газа температура его снизилась до t_2 . Определить массу газа, конечное давление и количество отведенной теплоты.

Решение задачи необходимо выполнить с использованием таблиц, теплоемкостей газов и, используя линейные зависимости теплоемкости газов от температуры.

Данные для решения задачи приведены в таблице5. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

Контрольные вопросы

- 1. Дать определение удельной теплоемкости.
- 2. Определение объемной и молярной теплоемкостей.
- 3. Что такое истинная теплоемкость?
- 4. От какого параметра зависит теплоемкость идеальных газов?
- 5. Каково различие между истинной и средней теплоемкостью тела?
- 6. Как определяются q_v uq_p по таблицам теплоемкостей?

Таблица данных для решения задания.

Последняя	V,	P ₁ ,	Предпоследняя	t_1	t_2	
цифра	\mathbf{M}^3	МΠа	цифра	0 C	$^{0}\mathrm{C}$	Газ
шифра			шифра			
0	0,11	1,0	0	100	27	CO_2
1	0,15	0,5	1	90	20	O_2
2	0,20	0,8	2	60	7	CO
3	0,35	1,5	3	120	17	воздух
4	0,45	2,0	4	150	27	N_2
5	0,70	0,5	5	200	27	SO_2
6	0,30	0,9	6	80	20	CO_2
7	0,25	1,2	7	75	15	N_2
8	0,55	2,5	8	40	17	CO
9	0,45	2,1	9	130	10	H_2

V. Основные газовые процессы

Основными термодинамическими процессами являются:

- 1) процесс сообщения или отнятия тепла при постоянном объеме газа (v=const)- изохорный процесс;
- 2) процесс сообщения или отнятия тепла при постоянном давлении (p=const) изобарный процесс;
- 3) процесс сообщения или отнятия тепла при постоянной температуре (t=const) изотермической процесс;
- 4) процесс без сообщения или отнятия тепла извне (dq=0)- адиабатный процесс;
- 5) процесс, в котором изменение параметров подчиняется уравнению $PV^m = const$

где, m — величина, постоянная для данного процесса, - политропный процесс.

V. 1. Изохорный процесс

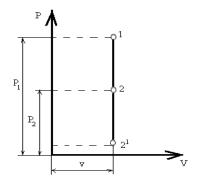


Рис 1. Изохорный процесс

Изохорный процесс — В диаграмме PV этот процесс изображается прямой 1-2, параллельной оси ординат. Уравнениепрямой1-2 (рис 1), называемой изохорой,

V=const.

Зависимость между начальными и конечными параметрами процесс

$$\frac{P_1}{P_2} = \frac{T_1}{T_2} \tag{34}$$

Изменение внутренней энергии

$$\Delta u_{v} = q_{v} = C_{vm}(t_{2} - t_{1}) \text{ ккал/к}$$
 (35)

Если в процессе участвует M или $V_H M^3$ газа, то количество тепла или изменение внутренней энергии газа подсчитывается по формуле

$$Q_V = \Delta U_V = MC_{vm}(t_2 - t_1) = V_H C'_{vm}(t_2 - t_1)$$
(36)

где, V_H - количество газа в M^3 при нормальных условиях.

В изохорном процессе газ работы не совершает (L=0)

Пример 6.

В баллоне вместимостью $0,01 \, \text{м}^3$ находится метан под давлением $0,51 \, \text{МПа}$ и при температуре $t=15 \, ^{\circ}\text{C}$. Какова будет температура газа, если к нему подвести $5 \, \text{кДж}$ теплоты? Теплоемкость газа $c_v=1,7 \, \text{кДж/(кг·К)}$. Метан рассматривается как идеальный газ.

Решение:

Массу метана как идеального газа определяем из уравнения

$$M = \frac{PV}{RT} = \frac{0.51 \cdot 10^6 \cdot 0.01}{518 \cdot 288.2} = 0.034 \kappa$$

Конечная температура процесса из уравнения (36)

$$Q_V = MC_v (T_2 - T_1)$$

$$T_2 = T_1 + \frac{Q_V}{MC_v} = 288.2 + \frac{5}{0.034 \cdot 1.7} = 377.5 \quad K$$

$$t_2 = T_2 - 273.2 = 104.3 \quad {}^{0}C$$

V. 2. Изобарный процесс

Изобарный процесс — В диаграмме PVэтот процесс изображается прямой 1-2 параллельной оси абсцисс. Уравнение прямой 1-2 (рис 2), называемой изобарой,

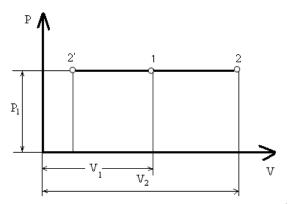


Рис 2. Изобарный процесс

P=const

Зависимость между начальными и конечными параметрами процесса

$$\frac{v_1}{v_2} = \frac{T_1}{T_2} \tag{37}$$

Работа 1 кг газа

$$L=p(v_2-v_1) \tag{38}$$

или

$$L = R(T_2 - T_1) \tag{39}$$

Для М кг газа

$$L=MP(v_2-v_1)=P(v_2-v_1)$$
 (40)

или

$$L=MR(t_2-t_1) \tag{41}$$

Если в процессе p=const участвует M кг или V_H M^3 газа, то количество тепла подсчитывается по формуле:

$$Q_{p} = Mc_{pm} (t_{2} - t_{1}) = V_{H} C'_{pm} (t_{2} - t_{1})$$
(42)

где, V_H - количество газа в м³ при нормальных условиях.

Изменение внутренней энергии газа определяется по формуле (35):

$$\Delta u = C_{vm}(t_2 - t_1)$$

или по формуле (26)

$$\Delta u = c_{vm_2} t_2 - c_{vm_1} t_1$$

Пример 7.

Азот массой 1 кг при подведении теплоты расширяется по изобаре с давлением 1,019 МПа. При этом его температура повышается с 25 до 125 °C. Определить конечный объем газа, термодинамическую работу, количество подведенной теплоты и изменение внутренней энергии в процессе.

Решение:

- 1. Из уравнение (8) находим, что удельная газовая постоянная для азота составляет 296 Дж/(κ г·K).
- 2. По уравнения Клапейрона (Pv = RT) находим начальный V_1 и конечный V_2 объемы газа

$$v_1 = \frac{RT_1}{P} = \frac{296 \cdot 298}{1.019 \cdot 10^6} = 0{,}087 \quad \text{m}^3 / \text{ke}$$

$$v_2 = \frac{RT_2}{P} = \frac{296 \cdot 398}{1.019 \cdot 10^6} = 0.116 \text{ m}^3 / \text{kg}$$

3. Удельная термодинамическая работа расширения

$$l_{12} = P(v_2 - v_1) = 1,019 \cdot 10^6 \cdot (0,087 - 0,116) = 30 \ \text{kJ} \times \text{/ k2}$$

Работа изменения давления $\omega_{1,2}$ равна нулю $\omega_{1,2} = 0$.

4. Количество теплоты

$$q_{1,2} = c_{pm} (t_2 - t_1)$$

Значение теплоемкости для азота находим из таблице V при средней температуре процесса

$$t_{mA} = \frac{t_1 + t_2}{2} = 75 \quad C; c_{pm} = 1,04 \quad \kappa \text{Джc} / (\kappa \text{г}.^{0}C);$$
$$q_{1,2} = c_{pm} (t_2 - t_1) = 1,04 \cdot (125 - 25) = 104 \quad \kappa \text{Джc} / \kappa \text{г}$$

$$\Delta u = u_2 - u_1 = c_{nm} (t_2 - t_1)$$

Значение теплоемкости C_{vm} находим из уравнения Майера

$$c_{vm} = c_{pm} - R = 1,04 - 0,296 = 0,75$$
 кДжс/(кг· 0 C);
 $\Delta u = u_{2} - u_{1} = 0,75 \cdot (125 - 25) = 75$ кДжс/кг

V. 3. Изотермический процесс

Изотермический процесс – Кривая изотермического процесса, называется изотермой, в диаграмме PV изображается равнобокой гиперболой (рис3). Уравнение изотермы в координатах PV:

Зависимость между начальными и конечными параметрами определяется по формулам:

$$\frac{P_1}{P_2} = \frac{v_2}{v_1} \tag{43}$$

$$\frac{P_1}{P_2} = \frac{V_2}{V_1}$$

Работа 1кг идеального газа определяется из уравнений:

$$L = RT \ln \frac{P_1}{P_2} \tag{46},$$

$$L = p_1 v_1 \ln \frac{v_2}{v_1} \tag{47},$$

$$L = p_1 v_1 \ln \frac{P_1}{P_2} \tag{48}$$

Если в процессе участвует М кг газа, то полученные из формул (45)-(48) значения нужно увеличить в М раз. Можно также для этого случая в формулах (47) и (48) заменить удельный объем 9 полным объемом V. Получим

$$L = p_1 V_1 \ln \frac{\theta_2}{\theta_1} (49), L = p_1 V_1 \ln \frac{P_1}{P_2}$$
 (50)

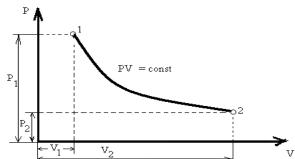


Рис 3. Изотермический процесс

$$\Delta u = C_{vm}(t_2 - t_1) = 0$$

Количество тепла, сообщаемого газу или отнимаемого от него, равно

$$q_t = l \tag{51}$$

или для М кг газа

$$Q_t = L \tag{52}$$

Пример 8.

Воздух массой 10 кг расширяется изотермически при t=400 $^{\circ}C$ от начального давления $P_1=800$ к Π а до конечного объема V=5м 3 . Определить начальный объем, конечное давление, работу расширения, изменение энтропии, энтальпии и внутренней энергии.

<u>Решение:</u>

Начальный объем определяем из уравнения состояния:

$$V_1 = \frac{MRT_1}{P_1} = \frac{10 \cdot 287 \cdot 400}{800000} = 1,435 \quad M^3$$

Конечное давление определяем по формуле (44)

$$P_2 = \frac{P_1 \cdot V_1}{V_2} = \frac{800000 \cdot 1,435}{5} = 225 \,\kappa \Pi a$$

Работу расширения определяем по формуле (49)

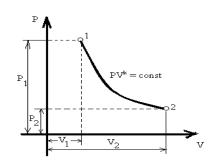
$$L = p_1 V_1 \ln \frac{g_2}{g_1} = \frac{800000 \cdot 1,435 \cdot 2,3 \ln 5}{1,435} = 1433$$
 кДже

Изменение энтропии

$$S_2 - S_1 = \frac{R \ln V_2}{V_1} = \frac{0.287 \cdot 2.3 \ln 5}{1.435} = 0.359 \quad \text{кДжс / K}$$

Энтальпия и внутренняя энергия идеального газа в изотермическом процессе не изменяются, так как di = 0 и du = 0.

V. 4. Адиабатный процесс


Адиабатный процесс — Уравнение адиабаты в системе PV (рис 4) при постоянной теплоемкости (C=const)для идеального газа

$$PV^k = const$$
,

где, $k = \frac{c_{\rho}}{c_{g}}$ - показатель адиабаты.

Зависимости между начальными и конечными параметрами процесса: между P и $\mathcal G$

$$\frac{P_2}{P_1} = \left(\frac{g_1}{g_2}\right)^{\kappa} \tag{53}$$

 $Puc\ 4.\ A$ диабатный процесс между T и $\mathcal G$

$$\frac{T_2}{T_1} = \left(\frac{\theta_1}{\theta_2}\right)^{\kappa - 1} \tag{54}$$

между p и T

$$\frac{T_2}{T_1} = \left(\frac{p_1}{p_2}\right)^{\frac{\kappa - 1}{\kappa}} \tag{55}$$

Работа 1 кг газа определяется по следующим формулам:

$$l = \frac{1}{\kappa - 1} (p_1 \mathcal{G}_1 - p_2 \mathcal{G}_2) \tag{56}$$

$$l = \frac{p_1 \theta_1}{\kappa - 1} \left[1 - \left(\frac{\theta_1}{\theta_2} \right)^{\kappa - 1} \right]$$
 (57)

$$l = \frac{R}{\kappa - 1} (T_1 - T_2) \tag{58}$$

$$l = \frac{p_1 \mathcal{G}_1}{\kappa - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right] \tag{59}$$

Для определения работы М кг газа нужно в формулах (56), (57) и (59) заменить удельный объем 9 общим объемом Vгаза. Тогда получим:

$$L = \frac{1}{\kappa - 1} (p_1 V_1 - p_2 V_2) \tag{60}$$

$$L = \frac{p_1 V_1}{\kappa - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\kappa - 1} \right] \tag{61}$$

$$L = \frac{p_1 V_1}{\kappa - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]$$
 (62)

Формула (58) для М кг газа примет следующий вид:

$$L = \frac{MR}{\kappa - 1} \left(T_1 - T_2 \right) \tag{63}$$

Изменение внутренней энергии идеального газа в адиабатном процессе может быть также выражено уравнением

$$\Delta u = c_{gm} \left(t_2 - t_1 \right) \tag{64}$$

Пример 9.

Определить значения показателя адиабаты k кислорода как идеального газа, а также значения теплоемкости при постоянном объеме c_v при известной теплоемкости $c_v = 0.92$ кДж/кг. 0C .

Решение:

Теплоемкость при постоянном объеме по закону Майера равно

$$c_v = c_p - R = 0.92 - 0.26 = 0.66$$
 кДжс/кг. 0 С

Значения удельной газовой постоянной для кислорода определяются по (8)

$$R_{o_2} = \frac{8314}{\mu_{o_2}} = \frac{8314}{32} = 0,26$$
 кДж/(кг·° C)

Показатель адиабаты кислорода как идеального газа

$$\kappa = \frac{c_p}{c_v} = \frac{0.92}{0.66} = 1.4$$

V. 5. Политропный процесс

Уравнение политропы в системе координат PV(рис 5) 0при постоянной теплоемкости

$$PV^{m} = const,$$

где, т- показатель политропы.

Пользуясь рис 6, можно величине показателя политропы определить ее относительное расположение в диаграмме PV, а также выяснить характер процесса, т.е. имеет ли место подвод или отвод тепла и увеличение или уменьшение внутренней энергии газа.

Характеристической политропного процесса является величина

$$\varphi = \frac{\Delta u}{q}$$

которая может быть определена из выражения

$$\varphi = \frac{m-1}{m-k}$$

где m-показатель политропы, а $\kappa = \frac{c_p}{c_v}$

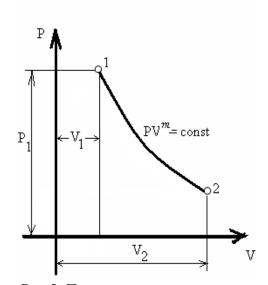


Рис 5. Политропный процесс

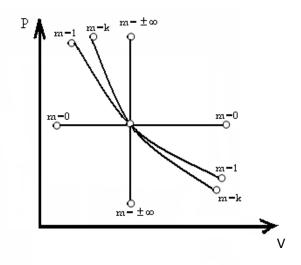


Рис 6. Показатели политропа

Зависимости между начальными и конечными параметрами процесса: между pи $\mathcal G$

$$\frac{p_2}{p_1} = \left(\frac{g_1}{g_2}\right)^m \tag{65}$$

между Tи ϑ

$$\frac{T_2}{T_1} = \left(\frac{g_1}{g_2}\right)^{m-1} \tag{66}$$

между p и T

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{m-1}{m}} \tag{67}$$

Работа 1 кг газа в политропном процессе определяется по следующим формулам:

$$l = \frac{1}{m-1} (p_1 \theta_1 - p_2 \theta_2)$$
 (68)

$$l = \frac{p_1 \theta_1}{m - 1} \left[1 - \left(\frac{\theta_1}{\theta_2} \right)^{m - 1} \right] \tag{69}$$

$$l = \frac{p_1 g_1}{m - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{m - 1}{m}} \right]$$
 (70)

$$l = \frac{R}{m-1} (T_1 - T_2) \tag{71}$$

Если количество тепла, участвующего в процессе, известно, то работа может быть также вычислена по формуле

$$l = \frac{k-1}{k-m}q\tag{72}$$

Для определения работы М κ г газа нужно в формулах (68)-(70) заменить удельный объем 9 полным объемом газа V.Тогда:

$$L = \frac{1}{m-1}(p_1V_1 - p_2V_2) \tag{73}$$

$$L = \frac{p_1 V_1}{m - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{m - 1} \right] \tag{74}$$

$$L = \frac{p_1 V_1}{m - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{m - 1}{m}} \right]$$
 (75)

Количество тепла, сообщаемого газу или отнимаемого от него:

$$q = c(t_2 - t_1) = c_{\theta} \frac{m - k}{m - 1} (t_2 - t_1)$$
(76)

$$Q = Mc(t_2 - t_1) = Mc_{\theta} \frac{m - k}{m - 1} (t_2 - t_1)$$
(77)

Изменение внутренней энергии газа в политропном процессе находим либо по общей для всех процессов формуле:

$$\Delta u = c_{g_m}(t_2 - t_1)$$

Показатель политропного процесса т определяется из уравнения

$$m = \frac{c_p - c}{c_q - c}$$

Пример 10.

1,5 кг воздуха сжимают политропно от P_1 =0,09 МПа и t_1 =18 0 С до P_2 =1 МПа; температура при этом повышается до t_2 =125 0 С.

Определить показатель политропы, конечный объем, затраченную работу и количество отведенного тепла.

Решение:

Показатель политропа следующего уравнения

$$\frac{m-1}{m} = \frac{\lg \frac{T_2}{T_1}}{\lg \frac{P_2}{P_1}} = \frac{\lg \frac{398}{291}}{\lg \frac{1}{0,09}} = 0,13$$

отсюда

$$m = \frac{1}{1 - 0.13} = 1,149$$

Конечный объеме определяем из характеристического уравнения

$$V_2 = \frac{MRT_2}{P_2} = \frac{1,5 \cdot 287 \cdot 398}{1 \cdot 10^6} = 0,171 \quad \text{M}^3$$

Затраченная работа

$$L = \frac{MR}{m-1}(t_1 - t_2) = \frac{1,5 \cdot 287}{0,149} (18-125) = -309200 = -309,2$$
 кДж

Количество отведенного тепла по уравнению (77)

$$Q = Mc_{_{V}} \frac{m-k}{m-1} (t_{_{2}} - t_{_{1}}) = 1,5 \cdot \frac{20,93}{28,96} \cdot \frac{1,149-1,4}{1,149-1} \cdot (125-18) = -195,4 \kappa \partial \mathcal{H} = -46,7 \kappa \kappa$$
ал

Задача 9.

Газ при давлении P_1 =1 МПа и температуре t_1 = 20 0 C нагревается при постоянном объеме до t_2 = 300 0 C.

Определить конечное давление газа.

Задача 10.

В закрытом сосуде емкостью V=0,3 M^3 содержится 2,75 κz воздуха при давлении P=0,8 МПа и температуре t_1 =25 0 C.

Определить давление и удельный объем после охлаждения воздуха до 0 $^{0}\mathrm{C}.$

Задача 11.

Какое количество тепла необходимо затратить, чтобы нагреть 2 M^3 воздуха при постоянном избыточном давлении P=2 МПа от t_1 =100 0 Сдо t_2 =500 0 С? Какую работу при этом совершит воздух?

Давление атмосферы принять равным 760 мм рт. ст.

Задача 12.

1 кг воздуха при температуре t_1 =30 0 С и начальном давлении P_1 =0,1 МПа сжимается изотермически до конечного давления P_2 =1 МПа.

Определить конечный объем, затрачиваемую работу и количество тепла, отводимого от газа.

Задача 13.

Воздух массой 1 кг адиабатно расширяется с давления P_1 =1,019 МПа и температуры 100 0С до давления P_2 =1,102 МПа. Найти конечные объем, температуру, потенциальную и термодинамическую работу, изменение внутренней энергии и энтальпии. Показатель процесса расширения принять равным k=1,4.

Задача 14.

Воздух в количестве $0.01~\text{m}^3$ при давлении P_1 =1 МПа и температуре t_1 =25 0 С расширяется в цилиндре с подвижным поршнем до 0.1~MПa.

Определить конечный объем, конечную температуру, работу, произведенную газом, и подведенное тепло, если расширение в цилиндре происходит: а) изотермически, б) адиабатно и в) политропно с показателями m= 1,3.

Задание 4.

Газ массой M, имеющий начальные параметры P_1 и t_1 расширяется (сжимается) до давления P_2 . Найти конечные параметры, количество теплоты, участвующей в процессе, работу и изменение внутренней энергии при изотермическом и адиабатном процессах сжатия (расширения). Процессы изобразить в масштабе на «миллиметровке» в PV и TS — диаграммах.

Данные для решения задачи приведены в таблице6. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки).

таблица 6

Таблица д	анных для	решения	задания.
-----------	-----------	---------	----------

Последняя	M,	t		Предпоследняя	P ₁ ,	P ₂ ,
цифра	ΚΓ	0 C	Газ	цифра	МПа	МПа
шифра				шифра		
0	20	17	воздух	0	0,10	0,55
1	40	27	CO_2	1	0,11	1,10
2	50	10	H_2	2	0,40	0,50
3	30	15	SO_2	3	0,56	1,20
4	60	37	CO	4	0,50	0,60
5	15	20	N_2	5	0,45	1,00
6	25	47	O_2	6	1,05	0,10
7	70	100	воздух	7	0,25	0,95
8	90	25	H_2	8	1,45	0,35
9	20	50	CO_2	9	2,05	0,85

Контрольные вопросы

- 1. Дать определения основным термодинамическим процессам.
- 2. Что такое изохорный, изобарный, изотермический и адиабатный процессы? Как они изображаются в координатах P-V?
- 3. Написать уравнения основных процессов.
- 4. Написать формулы соотношений между параметрами P, V и T для каждого процесса?
- 5. Что такое политропный процесс? Как можно определить показатель политропного процесса?
- 6. По каким уравнениям вычисляется изменение энтропии в изохорном, изобарном, изотермном, адиабатном и политропном процессах?

VI. Теоретические циклы поршневых двигателей внутреннего сгорания

Цикл с подводом тепла при постоянном объеме состоит из двух адибат и двух изохор (рис 7)

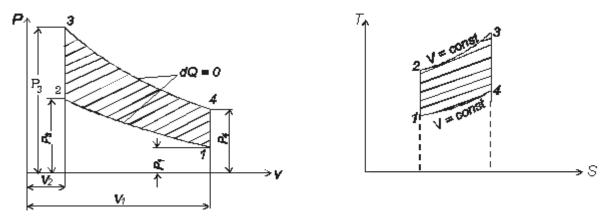


Рис 7.Диаграмма цикла ДВС с подводом теплоты при V=const в PV и ТЅкоординатах.

Характеристиками цикла являются:

$$\varepsilon = \frac{v_1}{v_2}$$
 степень сжатия

$$\lambda = \frac{P_3}{P_2}$$
 степень повышения давления

Количество подведенного тепла

$$q_1 = C_v (T_3 - T_2)$$

Количество отведенного тепла (абсолютное значение)

$$q_2 = C_v (T_4-T_1)$$

Работа цикла

$$l_0 = q_1 - q_2$$

Термический к.п.д. цикла

$$\eta_{t} = 1 - \frac{1}{\varepsilon^{k-1}} \tag{78}$$

Цикл с подводом тепла при постоянном давлении состоит из двух адибат, одной изоборы и одной изохоры. (рис 8)

 $Puc\ 8$. Диаграмма цикла ДВС с подводом теплоты при P=const в PV и TSкоординатах. Характеристиками цикла являются:

$$\varepsilon = \frac{v_1}{v_2}$$
 Степень сжатия

$$\rho = \frac{v_3}{v_2}$$
 Степень предварительного расширения

Количество подведенного тепла

$$q_1 = C_p (T_3 - T_2)$$

Количество отведенного тепла (абсолютное значение)

$$q_2 = C_v (T_4-T_1)$$

Работа цикла

$$\mathbf{l}_0 = \mathbf{q}_1 - \mathbf{q}_2$$

Термический к.п.д. цикла

$$\eta_{t} = 1 - \frac{1}{\varepsilon^{k-1}} \cdot \frac{\rho^{k-1}}{K(\rho - 1)} \tag{79}$$

Цикл с комбинированным подводом тепла состоит из двух адиабат, двух изохор и одной изобары (рис 9).

Характеристиками цикла являются:

$$\varepsilon = \frac{\upsilon_1}{\upsilon_2}$$
 $\lambda = \frac{P_3}{P_2}$ $\rho = \frac{\upsilon_4}{\upsilon_3}$

Количество подведенного тепла:

$$q_1 = C_v (T_3 - T_2) + C_p (T_4 - T_3)$$

Количество отведенного тепла (абсолютное значение) $q_2 = C_v (T_5 - T_1)$

Термический к.п.д. цикла

$$\eta_{t} = 1 - \frac{1}{\varepsilon^{k-1}} \cdot \frac{\lambda \rho^{k-1}}{\lambda - 1 + K\lambda(\rho - 1)}$$

$$\uparrow \qquad \qquad \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Рис 9. Диаграмма цикла ДВС со смешанным подводом теплоты в PV и ТЅкоординатах.

Во всех приведенных выше теоретических циклах поршневых д.в.с. уравнения для определения количества подведенного и отведенного тепла, а также для технического к.п.д. даны для случая с=const.

Пример 11.

Для идеального цикла поршневого двигателя с подводом теплоты при P=const определить параметры всех основных точек, полезную удельную работу, удельное количество подведенной и отведенной теплоты, термический КПД цикла, термический КПД цикла Карно по условиям задачи, среднее индикаторное давление (см. рис 8), если даны P_I =0,1 МПа, T_I =350 K, степень сжатия ε =20, степень изобарного расширения ρ =2, рабочего тело-воздух с газовой постоянной R=287 Дж/(кг· K), показатель адиабаты k=1,4. Теплоемкость рабочего тела принять постоянной.

<u>Решение:</u>

Параметры точки 1: $P_1 = 0.1 \, M\Pi a; T_1 = 350 \, K;$

$$v_1 = \frac{RT_1}{P_1} = \frac{287 \cdot 350}{0.1 \cdot 10^6} = 1.0 \quad \text{m}^3 / \text{kg}$$

Параметры точки 2: $v_2 = \frac{v_1}{\varepsilon} = \frac{1}{20} = 0.05$ $m^3 / \kappa \varepsilon$; $\frac{P_2}{P_1} = \left(\frac{v_1}{v_2}\right)^k = \varepsilon^k$;

$$P_2 = P_1 \cdot \varepsilon^k = 0.1 \cdot 20^{1.4} = 6.62 \quad M\Pi a; T_2 = \frac{P_2 \cdot V_2}{R} = \frac{6.62 \cdot 0.05 \cdot 10^6}{287} = 1155 \quad K$$

Параметры точки 3: $\frac{v_3}{v_2} = \frac{T_3}{T_2} = \rho$; $T_3 = T_2 \cdot \rho = 1155 \cdot 2 = 2310$ K;

$$P_3 = 6.62 \quad M\Pi a; v_3 = v_2 \cdot \rho = 0.05 \cdot 2 = 0.1 \quad m^3 / \kappa z;$$

Параметры точки 4: $v_4 = 1.0$ $M^3 / \kappa z; \frac{T_4}{T_3} = \left(\frac{v_3}{v_4}\right)^{k-1};$

$$T_4 = 2310 \cdot 0, 1^{0,4} = 920 \quad K; P_4 = \frac{R \cdot T_4}{V_4} = \frac{287 \cdot 920}{10^6} = 0,264$$

Vдельная работа расширения $l_1 = P_2(v_3 - v_2) + \left[\frac{1}{(k-1)}\right] \cdot (P_3 \cdot v_3 - P_4 \cdot v_4) = 0$

$$=6,62\cdot 10^{6}(0,1-0,05)+\left(\frac{10^{6}}{0,4}\right)\cdot (6,62\cdot 0,1-0,264\cdot 1)=1326000\ \text{ Am}\ /\ \text{ke}=1326\ \text{ kJac}\ /\ \text{ke}=1326$$

Vдельная работа сжатия $l_2 = \left\lceil \frac{1}{(k-1)} \right\rceil \cdot (P_1 \cdot v_1 - P_2 \cdot v_2) =$

$$= \left(\frac{10^6}{0.4}\right) \cdot (1 \cdot 0.1 - 6.62 \cdot 0.05) = -578000 \; \text{ Mic} \, / \, \text{k2} = -578 \quad \text{kMic} \, / \, \text{k2}$$

Полезная удельная работа $l = l_1 + l_2 = 1326 - 578 = 748$ кДж/кг Удельное количество подведенной теплоты

$$q_1 = c_p(T_3 - T_2) = \left(\frac{29,09}{28,85}\right) \cdot (2310 - 1155) = 1162$$
 кДжс/кг

Удельное количество отведенной теплоты

$$q_2 = c_v(T_4 - T_1) = \left(\frac{20,78}{28,85}\right) \cdot (920 - 350) = 410$$
 кДжс/кг

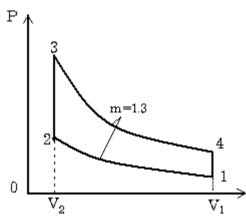
Полезно использованное удельное количество теплоты

$$q = q_1 - q_2 = 1162 - 410 = 752$$
 кДжс/кг

Термический КПД цикла $\eta_{t} = \frac{q}{q_{1}} = \frac{752}{1162} = 0,648$

Проверка КПД цикла:
$$\eta_t = 1 - \left[\frac{(\rho^k - 1)}{k \cdot \varepsilon^{k-1}(\rho - 1)} \right] = 1 - \left[\frac{2^{1,4} - 1}{1,4 \cdot 20^{0,4}} \right] = 0,65$$

Термический КПД цикла Карно, по данным задачи,


$$\eta_t = 1 - \frac{T_1}{T_3} = 1 - \frac{350}{2310} = 0.85$$

Среднее индикаторное давление

$$P_i = \frac{l}{(v_1 - v_2)} = \frac{748000}{(1 - 0.05) \cdot 10^5} = 0.788 \quad M\Pi a.$$

Задача 15.

Для идеального цикла поршневого двигателя внутреннего сгорания с подводом тепла при $\theta = const$ определить параметры в характерных точках, полученную работу, термических к.п.д., количество подведенного и отведенного тепла, если дано: $P_1 = 0.1$ МПа, $t_1 = 20$ 0 C, $\varepsilon = 3.6$, $\lambda = 3.33$, k = 1.4.

Puc 10. PV диаграмма для задача

Рабочее тело – воздух. Теплоемкость принять постоянной.

Задача 16.

1 кг воздуха работает по циклу, изображенному на рис 10. Начальное давление воздуха P_1 =0,1 МПа, начальная температура t_1 = 27 0 C, а степень сжатия ε =5. количество тепла, подводимого во время изохорного сжатия, равно 1300 кДж/кг.

Задание 5.

Определить параметры рабочего тела в характерных точках идеального цикла поршневого двигателя внутреннего сгорания со смешанным подводом теплоты, если известны давление P_1 и температура t_1 рабочего тела в начале

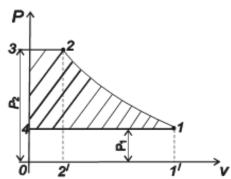
сжатия, степень сжатия ϵ , степень предварительного расширения ρ и степень повышения давления λ .

Определить работу, получаемую от цикла, его термический к.п.д. и изменение энтропии отдельных процессов. За рабочее тело принять воздух, считая теплоемкость его постоянной в расчетном интервале температур.

Построить на «миллиметровке» в масштабе этот цикл в координатах PV и TS. Дать к полученным графикам необходимые пояснения.

Данные для решения задачи приведены в таблице7. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

таблица 7


Последняя	P_1	t_1	3	Предпоследняя	ρ	λ
цифра	МПа	0 C		цифра	-	
шифра				шифра		
0	0,062	45	12,5	0	1,55	2,05
1	0,064	40	13,5	1	1,65	1,95
2	0,096	35	14,5	2	1,75	1,85
3	0,098	30	15,5	3	1,85	1,75
4	0,100	25	16,5	4	1,65	1,55
5	0,102	15	17,5	5	1,95	1,65
6	0,104	10	18,5	6	2,05	1,55
7	0,106	5	19,5	7	2,15	1,45
8	0,108	-15	20,5	8	2,25	1,35
9	0,106	-25	21,5	9	2,35	1,25

Контрольные вопросы

- 1. На какие группы делятся поршневые двигатели внутреннего сгорания (ДВС)?
- 2. Дать определения основным характеристикам циклов.
- 3. Почему цикл Карно нельзя реализовать в реальных двигателях?
- 4. Что такое цикл Отто и цикл Дизеля?
- 5. Сравнить циклы с подводом теплоты при V=const и P=const при разных степенях сжатия и одинаковых максимальных температурах, пользуясь методом сравнения площадей и методом среднеинтегральных температур.

VII. Поршневые компрессоры.

На рис.11 в диаграмме PV изображены процессы, протекающие в идеальном компрессоре.

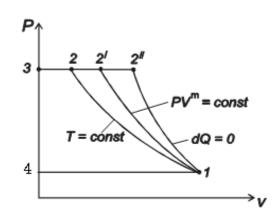


Рис 12. Теоретическая работа компрессора

Линия 4-1 изображает процесс всасывания газа, кривая 1-2 – процесс сжатия и линия 2-3 – процесс нагнетания. Диаграмму 1-2-3-4 называют *теоретической индикаторной диаграммой*.

Теоретическая работа компрессора ℓ_0 определяется площадью индикаторной диаграммы и зависит от процесса сжатия (рис. 12). Кривая 1-2 изображает процесс изотермического сжатия, кривая $1-2^{ll}$ -адиабатного сжатия и кривая $1-2^{ll}$ - политропного сжатия.

При изотермическом сжатии теоретическая работа компрессора равна работе изотермического сжатия.

$$\ell_0 = P_1 \, v_1 \, \ell n \, \frac{P_2}{P_1} = RT \, \ell n \, \frac{P_2}{P_1} \tag{81}$$

Если масса всасываемого воздуха М кг, а объем его V_1 м³, то

$$L_0 = P_1 V_1 \ln \frac{P_2}{P_1}$$
 (82)

Работа, отнесенная к 1м³ всасываемого воздуха

$$l_0^1 = P_1 \ln \frac{P_2}{P_1} \tag{83}$$

Работа для получения 1м³ сжатого воздуха

$$I_0^{11} = \mathbf{p}_2 \, \ell \mathbf{n} \, \frac{P_2}{P_1} \tag{84}$$

Количество тепла, которое должно быть отведено при изотермическом сжатии,

$$q=\ell_0$$
 или $Q=L_0$

При *адиабатном сжатии* теоретическая работа *компрессора* в k раз больше работы адиабатного сжатия:

$$\ell_0 = \frac{k}{k-1} P_1 \ \upsilon_1 \left[\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right]$$
 (85)

Если масса всасываемого воздуха Мкг, а объем его V_1 м 3 , то

$$L_0 = \frac{k}{k-1} P_1 V_1 \left[\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right]$$
 (86)

Работа, отнесенная к 1 м³ всасываемого воздуха

$$l^{1} = \frac{k}{k-1} P_{1} \left[\left(\frac{P_{2}}{P_{1}} \right)^{\frac{k-1}{k}} - 1 \right]$$
 (87)

Работа для получения 1 м³ сжатого воздуха

$$l^{11} = \frac{k}{k-1} P_2 \left[1 - \left(\frac{P_1}{P_2} \right)^{\frac{k-1}{k}} \right]$$
 (88)

Работа компрессора при адибатном сжатии может быть также найдена по формуле:

$$\ell_0 = i_2 - i_1 \ (89)$$

 i_1 и i_2 - соответственно начальное и конечное значение энтальпии воздуха.

Теоретическая мощность двигателя для привода компрессора определяется по формулам:

$$N = \frac{L_0}{3600 \cdot 1000} \tag{90}$$

$$N = \frac{V l_0^1}{3600 \cdot 1000} \tag{91}$$

$$N = \frac{V l_0^{11}}{3600 \cdot 1000} \tag{92}$$

Действительная мощность, потребляемая двигателем компрессора, для сжатия М $\kappa z/v$ газа определяется по формуле

$$N = \frac{L_0}{3600 \cdot 1000 \eta_1} \tag{93}$$

Пример 12.

Одноцилиндровый одноступенчатый поршневой компрессор сжимает воздух от атмосферного давления P_1 =0,1 МПа до требуемого давления

 P_2 =0,75 МПа. Определить эффективную мощность привода компрессора и необходимую мощность электродвигателя с запасом 10% на перегрузку, если диаметр цилиндра D=0,12 м, ход пориня S=0,12, частота вращения вала n=12 об/с, относительный объем вредного пространства δ = 0,05, показатель политропы расширения остающегося во вредном объеме газа m=1,33, коэффициент, учитывающий, уменьшение давления газа при всасывании, η_p =0,94 и эффективный адиабатный КПД компрессора $\eta_{e,ao}$ =0,94.

Решение:

Определяется степень повышения давления

$$\lambda = \frac{P_2}{P_1} = \frac{0.75}{0.1} = 7.5$$

Объемный КПД компрессора

$$\eta_{o\delta} = 1 - \delta \cdot \left(\lambda^{\frac{1}{m}} - 1\right) = 1 - 0.05 \cdot \left(7.5^{\frac{1}{1.33}} - 1\right) = 0.772$$

Коэффициент подачи компрессора

$$\eta_{v} = \eta_{oo} \cdot \eta_{p} = 0,772 \cdot 0,94 = 0,726$$

Теоретическая подача компрессора

$$V_T = \frac{\pi D^2}{4} \cdot S \cdot n = \frac{3,14 \cdot 0,12^2}{4} \cdot 0,12 \cdot 12 = 0,0163 \quad m^3 / c$$

Действительная подача компрессора

$$V = V_T \cdot \eta_v = 0.0163 \cdot 0.726 = 0.0118 \text{ m}^3 / c$$

Теоретическая мощность привода компрессора при адиабатном сжатии

$$N_{ab} = \frac{\kappa}{\kappa - 1} \cdot \frac{P_1 \cdot V}{10^3} \left(\lambda^{\frac{\kappa - 1}{\kappa}} - 1 \right) = \frac{1.4}{1.4 - 1} \cdot \frac{0.1 \cdot 10^6 \cdot 0.118}{10^3} \left(7.5^{\frac{1.4 - 1}{1.4}} - 1 \right) = 3.21 \quad \kappa Bm$$

Эффективная мощность привода компрессора

$$N_c = \frac{N_{ab}}{N_{acc}} = \frac{3,21}{0,75} = 4,29 \quad \kappa Bm$$

Необходимая мощность электродвигателя с 10 % -ным запасом перегрузки

$$N_{ab} = 1.1 \cdot N_c = 4.7 \quad \kappa Bm$$

Задача 17.

Компрессор всасывает 100 ${\it m}^3/{\it q}$ воздуха при давлении P_1 =0,1 МПа и температуре t_1 =27 0 C. Конечное давление воздуха составляет P_2 = 0,8 МПа.

Определить теоретическую мощность двигателя для привода компрессора и расход охлаждающей воды, если температура ее повышается на 13 0 С. Расчет произвести для изотермического, адиабатного и политропного сжатия. Показатель политропы принять 1,2. Теплоемкость воды принять равной 4,19 $\kappa \mathcal{J} \mathcal{ж} / \kappa \mathcal{E}$

Задание 6.

Начальные параметры P_1 МПа, t_1 0 С и конечное давление P_2 МПа, а производительность компрессора М кг/ч. Сжатие воздуха в компрессоре происходит политропическом процесс, его политропический показатель n. Соотношение поршня на расстояние диаметра в цилиндре равен S/D=1,3. Частота вращения компрессора коленчатого вала ω , $o\delta$ / muh.

Определить теоретическая мощность двигателя, приводящего в движение компрессор, ход расстояние поршня и диаметр цилиндра.

Данные для решения задачи приведены в таблице 8. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

таблица 8 *Таблица данных для решения задания*.

Последняя	P_1	t_1	Предпоследняя	P_2	M	ω
цифра	МПа	0 C	цифра	МПа	кг/ч	об/мин
цифра			шифра			
0	0,1	16	0	0,55	300	200
1	0,1	24	1	0,60	320	250
2	0,1	13	2	0,64	360	300
3	0,1	20	3	0,68	390	320
4	0,1	26	4	0,71	370	350
5	0,1	22	5	0,73	400	270
6	0,1	25	6	0,75	420	210
7	0,1	17	7	0,85	460	330
8	0,1	15	8	0,92	490	160
9	0,1	9	9	0,90	510	180

Контрольные вопросы

- 1. Какие машины называются компрессорами?
- 2. Каковы основные типы компрессорных машин? В чем их различие?
- 3. Какой процесс сжатия в поршневом компрессоре является наиболее выгодным и почему?
- 4. Какие процессы возможны при сжатии газа в компрессоре?
- 5. Какими уравнениями определяется работа на провод компрессора при изотермическом, адиабатном и политропном сжатии рабочего тела?

VIII.Истечение газов и паров

При решении задач, связанных с истечением газа через сопло (насадки)

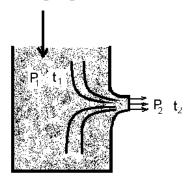


Рис 13.Истечение газа через сопло

(рис 13) чаще всего приходится определять скорость истечения и расход, т.е. количество газа, вытекающего в единицу времени. В этих случаях необходимо прежде всего найти отношение P_2/P_1 , где P_2 -давление среды на выходе из сопло, P_1 -давление среды на входе в сопло.

Полученное числовое значение P_2/P_1 сравнивают с так называемым критическим отношением давлений для данного газа, определяемым из равенства

$$\left(\frac{p_2}{p_1}\right)_{\kappa\rho} = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}} \tag{94}$$

и равным:

для одноатомных газов при к=1,67

$$\left(\frac{P_2}{P_1}\right)_{\kappa p} = 0.487$$

для двухатомных газов при к=1,4

$$\left(\frac{P_2}{P_1}\right)_{\kappa p} = 0.528$$

для трех и многоатомных газов при к=1,29

$$\left(\frac{P_2}{P_1}\right)_{\kappa p} = 0.546$$

Если адиабатное истечение газа происходит при

 $\left(\frac{P_2}{P_1}\right)$ > $\left(\frac{P_2}{P_1}\right)_{\kappa p}$, то теоретическая скорость газа у устья суживающегося сопла

определяется по формуле:

$$C = \sqrt{2 \frac{\kappa}{\kappa - 1} p_1 \mathcal{S}_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]}$$
 (95)

где, к- показатель адиабаты;

 g_{i} –удельный объем газа на входе в сопло.

Заменяя для идеального газа в формуле (95) P_1, \mathcal{G}_1 – на RT_1 , получаем

$$C = \sqrt{2 \frac{\kappa}{\kappa - 1} R T_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]}$$
 (96)

В формулах, (95) и (96) значения Р, ϑ и и и соответственно в следующих единицах: H/M^2 , $\kappa \Gamma/M^3$ и $\mathcal{I}_{\mathcal{M}}/(\kappa \Gamma \bullet \Gamma \mathrm{pag})$.

Теоретическая скорость газа может быть также найдена по формуле

$$C = \sqrt{2(i_1 - i_2)} \tag{97}$$

где, i_1 и i_2 - соответственноэнтальпии газа в начальном и конечном состояниях в Дж/кг.

Если значения i выражены в кДж/кг, то формула (97) принимает следующий вид:

$$C = \sqrt{2(i_1 - i_2)1000} = 44,76\sqrt{i_1 - i_2}$$

Если энтальпия газа измерена в ккал/кг, то формула (97) примет следующий вид:

$$C = \sqrt{2(i_1 - u_2) \cdot 1000 \cdot 4,1868} = 91,53\sqrt{i_1 - i_2}$$

Во всех приведенных случаях скорость c получается в м/сек. Расход газа определяется по формуле

$$M = f \sqrt{2 \bullet \frac{k}{k-1} \bullet \frac{P_1}{\mathcal{G}_1} \left[\left(\frac{P_2}{P_1} \right)^{\frac{2}{k}} - \left(\frac{P_2}{P_1} \right)^{\frac{k+1}{k}} \right]}$$
 (98)

где f - выходное сечение сопла в M^2 .

Если же адиабатное истечение газа происходит при $\left(\frac{P_2}{P_1}\right) \le \left(\frac{P_2}{P_1}\right)_{\kappa p}$, то

теоретическая скорость газа в устье суживающегося сопла будет равна критической скорости и определится по уравнению

$$C_{\kappa p} = \sqrt{2 \frac{\kappa}{\kappa - 1}} P_1 \vartheta_1 \tag{99}$$

Критическая скорость по формуле (99) зависит только от начального состояния газа и показателя адиабаты κ . Поэтому, подставляя значение κ для различных рабочих тел, получим более удобные формулы для определения критической скорости. В частности, для двухатомных газов

$$C_{\kappa p} = 1{,}08\sqrt{P_1 \mathcal{G}_1} \tag{100}$$

или

$$C_{\kappa p} = 1{,}08\sqrt{RT_1} \tag{101}$$

Критическая скорость может быть также определена по одной из следующих формул:

$$C_{\kappa p} = \sqrt{2(i_1 - i_{\kappa p})}$$

$$C_{\kappa p} = 44,76\sqrt{(i_1 - i_{\kappa p})} (102)$$

$$C_{\kappa p} = 91,53\sqrt{(i_1 - i_{\kappa p})}$$

где, i - энтальпия газа при критическом давлении $P_{\kappa p}$.

В первом формуле энтальпия выражена в Дж/кг, во второй – в кДж/кг и в третьей – в ккал/кг.

Расход газа в этом случае будет максимальным и может быть вычислен по уравнению

$$M_{\text{max}} = f \sqrt{2 \frac{\kappa}{\kappa + 1} \left(\frac{2}{\kappa + 1}\right)^{\frac{2}{\kappa - 1}} \frac{P_1}{g_1}}$$
(103)

Подставляя в эту формулу значение κ , получаем для двухатомных газов

$$M_{\text{max}} = 0.686 f \sqrt{\frac{P_1}{g_1}}$$
 (104)

Для трехатомных газов

$$M_{\text{max}} = 0.667 f \sqrt{\frac{P_1}{g_1}}$$
 (105)

Во всех перечисленных формулах следует брать P в H/M^2 , а \mathcal{G} - в $M^3/K\Gamma$. Расход газа получается в $K\Gamma/CEK$.

Площадь минимального сечения сопла определяется по формуле

$$f_{\min} = \frac{\mathbf{M}_{\max} \mathcal{G}_{\kappa p}}{C_{\kappa n}}, \, m^2 \tag{106}$$

Причем для двухатомных газов она может быть определена также по формуле:

$$f_{\min} = \frac{M_{\max}}{0.686\sqrt{\frac{P_1}{g_1}}},$$
(107)

А для трехатомных газов

$$f_{\min} = \frac{M_{\max}}{0.667\sqrt{\frac{P_1}{g_1}}},\tag{108}$$

Площадь выходного сечения сопла

$$f_2 = f_{\min} \frac{C_{\kappa p} \mathcal{G}_2}{C \mathcal{G}_{\kappa p}} \tag{109}$$

Причем $\theta_2 = \theta_1 \left(\frac{P_2}{P_1}\right)^{\frac{1}{\kappa}}$ - удельный объем газа при давлении среды P_2 .

Длина расширяющейся части сопла определяется по уравнению

$$l = \frac{d - d_{\min}}{2tg\frac{\alpha}{2}} \tag{110}$$

где, d и d_{min} — соответственно диаметры выходного и минимального сечений;

lpha - угол конусности расширяющейся части сопла.

Пример 13.

Определить теоретические значения скорости истечения и расхода воздуха, вытекающего из воздухопровода через отверстие диаметром 5 мм в атмосферу. Избыточное давление воздухопроводе $0,2 \cdot 10^5$ Па, температура $20~^0$ С. Барометрическое давление 758~мм.рт.ст.

Решение:

Абсолютное давление воздуха в воздухопроводе:

$$P_1 = 0.2 \cdot 10^5 + \frac{758}{750} \cdot 10^5 = 1.21 \cdot 10^5$$

Отношение давлений при истечение:

$$\frac{P_2}{P_1} = \frac{758 \cdot 10^5}{750 \cdot 1,21 \cdot 10^5} = 0,835 > \beta_{\kappa p} = 0,528$$

поэтому скорость истечения меньше критической и определяется по формуле (96):

$$C = \sqrt{2 \frac{\kappa}{\kappa - 1} RT_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]} = \sqrt{\frac{2 \cdot 1, 4}{1, 4 - 1} \cdot 287 \cdot 293 \left[1 - 0,835^{\frac{1, 4 - 1}{1, 4}} \right]} = 183 \quad \text{m/c}$$

Удельный объем воздуха в воздухопроводе:

$$\theta_1 = \frac{RT_1}{P_1} = \frac{287 \cdot 293}{1,21 \cdot 10^5} = 0,695 \quad \text{M}^3 / \kappa 2$$

Площадь отверстия:

$$F = \frac{\pi d^2}{4} = \frac{3,14 \cdot 0,005^2}{4} = 19,6 \cdot 10^{-6} \quad m^2$$

Секундный расход:

$$m = \frac{F \cdot c_2}{g_2} = \frac{F \cdot c_2}{g_1} \left(\frac{P_2}{P_1}\right)^{\frac{1}{\kappa}} = \frac{19 \cdot 10^{-6} \cdot 183 \cdot 0,835^{\frac{1}{1,4}}}{0,695} = 5,17 \cdot 10^{-3} \quad \kappa z / c$$

Задача 18

Воздух из резервуара с постоянным давлением P_1 =10 МПа и температурой t_1 =15 0 C вытекает в атмосферу через трубкой с внутренним диаметром 10 мм.

Определить скорость истечения воздуха и его секундный расход. Наружное давление принять равным P_2 =0,1 МПа. Процесс расширения воздуха считать адиабатным.

Задача 19

В резервуаре, заполненном кислородом, поддерживают давление $P_1 = 5$ МПа. Газ вытекает через суживающееся сопло в среду с давлением $P_2 = 4.0$ МПа. Начальная температура кислорода $100~^{0}$ C.

Определить теоретическую скорость истечения и расход, если площадь выходного сечения сопла $f = 20 \ \text{мм}^2$. Найти также теоретическую скорость истечения кислорода и его расход, если истечение будет происходить в атмосферу. В обоих случаях считать истечение адиабатным. Барометрическое давление принять равным $0,1 \ \text{М}\Pi a$.

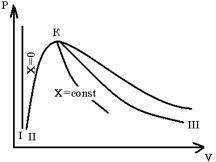
Задание 7.

Кислород при постоянном давлении P_1 и температуре t_1 вытекает из суживающего сопла в среду с давлением P_2 . Площадь выходного сечения сопла f_2 . Определить режим истечения, теоретическую скорость истечения и расход кислорода.

Данные для решения задачи приведены в таблице9. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

таблица 9 *Таблица данных для решения задания*.

Последняя	P_1	P_2	Предпоследняя	t_1	f_{2}
цифра	МПа	МПа	цифра	${}^{0}C$	MM^2
цифра			шифра		
0	1,0	0,1	0	27	100
1	2,0	1,3	1	17	80
2	3,0	1,0	2	37	60
3	4,0	1,8	3	100	40
4	5,0	3,0	4	15	20
5	6,0	4,0	5	10	50
6	0,6	0,3	6	12	70
7	0,8	0,5	7	57	90
8	0,5	0,3	8	45	30
9	0,4	0,4	9	20	20


Контрольные вопросы

- 1. Как определяют действительную скорость истечения?
- 2. Массовый расход идеального газа.
- 3. Как определяется максимальный расход идеального газа?
- 4. Как определяется длина сопла Лаваля?

IX. Водяной пар

Общие положения

На рис. 14дана диаграмма PV для водяного пара. Кривой I соответствует вода при 0 С, кривой II - вода при температуре кипения (или температуре насыщения) и кривой III — сухой насыщенный пар.

Кривую II — называют нижней пограничной кривой, кривую III- верхней пограничной кривой, а точку K, разделяющую обе пограничные кривые, называют критической.

Кривые I, II и III делят всю диаграмму на три части: область между кривыми I и II –жид-

, Рис 14.PV диаграмма для водяного пара. кость, область между кривыми II- III- смесь кипящей жидкости и пара, т. е. влажный насыщенный пар, и область правее кривой III- перегретый пар.

Критическая точка К характеризует критическое состояние, при котором исчезает различие в свойствах пара и жидкости. Критическая температура является наивысшей температурой жидкости и ее насыщенного пара. При температурах выше критической возможно существование только перегретого пара.

Критические параметры водяного пара следующие: $t_{\kappa p} = 374,15^{\circ}C$ $p_{\kappa p} = 221,29$ бар; $g_{\kappa p} = 0,00326$ м³/кг.

ІХ.1. Сухой насыщенный пар.

Состояние сухого насыщенного пара определяется его давлением или температурой. Потаблице XII и XV можно определить давление пара (и все остальные его параметры)По температуре, а по таблица XIII и XVI – температуру пара (и все остальные его параметры) по давлению. Зависимости $\rho=f(t_{\rm H}), v^{\mu}=f(\rho)$ и $\rho^{\mu}=f(\rho)$ для водяного пара приведены на рис. 15.

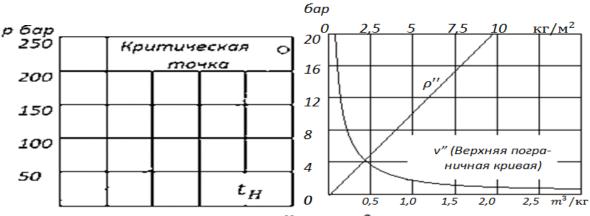


Рис 15. Зависимости $\rho = f(t_{\scriptscriptstyle H})$, $v^{\scriptscriptstyle H} = f(\rho)$ и $\rho^{\scriptscriptstyle H} = f(\rho)$ для водяного пара

ІХ.2. Влажный насыщенный пар

Состояние влажного насыщенного пара определяется его давлением или температурой и степенью сухости x. Очевидно, значение x=0 соответствует воде в состоянии кипения, а x=1 - сухому насыщенному пару.

Температура влажного пара есть функция только давления и определяется так же, как и температура сухого пара, по таблице XIII и XV. Удельный объем влажного пара зависит от давления и от степени сухости и определяется из уравнения

$$\mathcal{G}_{x} = \mathcal{G}_{x}^{11} + (1 - x)\mathcal{G}^{1} \tag{111}$$

Из этой формулы получаем значение *х*:

$$x = \frac{g_x - g^1}{g^{11} - g^1} \tag{112}$$

Для давлений до 30бар и х≥0,8 можно пренебречь последним членом равенства (111). Тогда удельный объем влажного насыщенного пара

$$\mathcal{G} = \mathcal{G}^{11} x \tag{113}$$

Для больших давлений и малых x следует пользоваться формулой (111). Плотность влажного пара определяется из равенства

$$\rho = \frac{1}{g_x} = \frac{1}{g^{11} + (1 - x)g^1}$$
 (114)

или приближенно

$$\rho_x = \frac{1}{g^{11}x} = \frac{\rho^{11}}{x} \tag{115}$$

ІХ.3. Перегретый пар

Перегретый пар имеет более высокую температуру t по сравнению с температуройт_нсухого насыщенного пара того же давления. Следовательно, в отличие от насыщенного пара перегретый пар определенного давления может иметь различные температуры. Для характеристики состояния перегретого пара необходима знать ∂Ba его параметра, например, давление и температуру. Разность температур перегретого и насыщенного пара того же давления t-t_нназывают перегревом пара.

Весьма важным в теплотехнических расчетах является определение количества тепла, затрачиваемого на отдельные стадии процесса парообразования и изменения внутренней энергии.

Количество тепла, затраченного для подогрева жидкости от $0^{\circ}C$ до температуры кипения при постоянном давлении, называют теплотой

жидкости. Ее можно определить как разность энтальпий жидкости при том же давлении и 0 °C, т. е.

$$q = i_2 - i_1 = i^1 - i_0^1$$
,

а так как i_0^1 при невысоких давлениях с достаточной для технических расчетов точностью можно считать равным нулю, то

$$q_p = i^1$$

Значения внутренней энергии жидкости можно вычислить из общей зависимости

$$i = u + p \mathcal{G}$$

тогда

$$u=i^1-p\,\mathcal{G}^1,$$

а так как величина $p \, \theta^{\scriptscriptstyle 1}$ мала, то при невысоких давлениях можно принимать

$$u^1 = i^1$$

т.е. внутренняя энергия жидкости равна энтальпии жидкости. Значения i^l , а следовательно, и u^l приводятся в таблицах насыщенного пара.

Количество тепла, необходимого для перевода 1кг кипящей жидкости в сухой насыщенный пар при постоянном давлении, называют теплотой парообразования и обозначают буквой r. Это количество теплоты расходуется на изменение внутренней энергии, связанное с преодолением сил сцепления d между молекулами жидкости, и на работу расширения (ψ).

Величину d называют внутренней теплотой парообразования, а величину ψ - внешней теплотой парообразования. Очевидно,

$$\psi = p(\theta^{11} - \theta^1) \tag{116}$$

И

$$r = d + \psi \tag{117}$$

Значения *т*приводятся в таблицах насыщенного пара.

Энтальпия i^{II} сухого насыщенного пара определяется по формуле

$$i^{II} = i^I + r \tag{118}$$

а изменение внутренней энергии при получении сухого насыщенного пара из 1 кг жидкости при 0 $\,^{\circ}\mathrm{C}$ - из выражения

$$u^{11} = i^{11} - p \, \vartheta^{11} \tag{119}$$

Для влажного насыщенного пара имеем следующие соотношения:

$$i_x = i^1 + rx \tag{120}$$

И

$$u_{x} = i_{x} - p \, \theta_{x} \tag{121}$$

где i_x - энтальпия влажного насыщенного пара;

 u_x – внутренняя энергия влажного насыщенного пара.

Количество тепла, необходимого для перевода 1 кг сухого насыщенного пара в перегретый при постоянном давлении, называется теплотой перегрева. Очевидно,

$$q_n = \int_{t_n}^t c_p dt \tag{122}$$

где $C_{\scriptscriptstyle p}$ -истинная массовая теплоемкость перегретого пара при постоянном давлении.

В результате тщательных исследований установлено, что теплоемкости $^{\it c}p$ перегретых паров зависят от температуры и давления, а также найдена аналитическая зависимость

$$C_{p} = f(p, \theta) \tag{123}$$

Однако пользоваться этой зависимостью вследствие ее сложности и громоздкости неудобно. Расчеты существенно упрощаются тем, что в таблицах водяного пара приводятся значения энтальпии перегретого пара i(см. таблицеXIV и XVII). Поэтому теплота перегрева может быть найдена из выражения

$$q_n = i - i^{11} \tag{124}$$

IX.4. Энтропия пара

Энтропия водяного пара отсчитывается от условного нуля, в качество которого принимают энтропию воды при 0,01°С и при давлении насыщения, соответствующем этой температуре, т. е. при давлении 0,006108 бар (0,006228 ат).

Энтропия жидкости S^1 определяется из выражения

$$S^{1} = c \ln \frac{T_{H}}{273} \tag{125}$$

гдес- теплоемкость воды, а T_{H} - температура насыщения в °К.

Значение теплоемкости для воды с достаточной точностью можно принять равным 4,19 $\kappa \not\square \mathscr{H}(\kappa r \bullet rpad)$ [$I\kappa \kappa an/\kappa r \bullet rpad$)]. Следовательно,

$$S^{1} = \ln \frac{T_{\text{H}}}{273} \kappa \kappa a \pi / (\kappa \epsilon \bullet \epsilon p a \theta)$$
 (126)

или

$$S^{1} = 4.19 \ln \frac{T_{\text{H}}}{273} \kappa \partial \mathcal{H} / (\kappa \epsilon \bullet \epsilon pad)$$

Если подогрев жидкости производится не до температуры кипения, а до произвольной температуры T, то под T_{H} в формуле (126) следует понимать эту произвольную температуру.

Энтропия сухого насыщенного пара S^{11} определяется из уравнения

$$S^{11} = S^1 + \frac{r}{T_{\rm u}} \tag{127}$$

где r - теплота парообразования.

Энтропия влажного насыщенного пара

$$S_{x} = S^{1} + \frac{r}{T_{y}} X \tag{128}$$

или на основании формулы (83)

$$S_x = S^1 + (S^{11} - S^1)X (129)$$

где х- степень сухости пара.

Значения энтропии S^{-I} и S^{II} приведены в таблицах насыщенного пара.

Значения $\frac{r}{T_{_{\rm H}}}$ можно получить из этих таблиц как разность $S^{11} - S^1$.

Энтропия перегретого пара может быть найдена из уравнения

$$S = S^{11} + \int_{T_u}^T C_p \, \frac{dT}{T}$$

Значения s приводятся в таблицах перегретого пара (см. таблицу XIV и XVII).

Пример 14.

Определить плотность влажного воздуха при параметрах t=320 0 C, P=0.3 МПа, d=30 г/кг с.в.

Решение:

Находим газовую постоянную влажного воздуха $R_{\it вл.в}$:

$$R_{\scriptscriptstyle{e.n.e}} = g_{\scriptscriptstyle{c.e.}} \cdot R_{\scriptscriptstyle{c.e.}} + g_{\scriptscriptstyle{e.n.}} \cdot R_{\scriptscriptstyle{e.n}}$$

где индексы «с.п.» и «в.п.» относятся к сухому воздуху и водяному пару:

$$R_{_{\text{e.t.}6}} = \frac{1}{1+d} \cdot R_{_{\text{c.s.}}} + \frac{d}{1+d} \cdot R_{_{\text{s.n}}};$$

$$R_{_{\text{e.t.}6}} = \frac{1}{1,030} \cdot \frac{8314}{28,96} + \frac{0,030}{1,030} \cdot \frac{8314}{18,016} = 292,1 \quad \text{Дж.}/(\text{ke} \cdot K)$$

Плотность влажного воздуха определяется из уравнения Клапейрона-Менделеева:

$$\rho = \frac{P}{RT} = \frac{0.3 \cdot 10^6}{292.1 \cdot 593.15} = 1,733 \quad \kappa z / M^3$$

Задача 20

Определить температуру, удельный объем, плотность, энтальпию и энтропию сухого насыщенного пара при давлении P = 1 МПа.

Задача 21

Найти давление, удельный объем и плотность воды, если она находится в состоянии кипения и температура ее равна $250~^{0}$ C.

Задача 22

Определить состояние водяного пара, если давление его $P=0,5M\Pi a, a$ температура $t=172~^{0}\mathrm{C}.$

Задача 23

Определить энтальпию и внутреннюю энергию влажного насыщенного пара при P = 1,3 МПа и степени сухости пара x = 0,98.

Задача 24

Найти энтропию влажного насыщенного пара P = 2,4 МПа и x = 0,8.

Задача 25

Определить массу, внутреннюю энергию, энтальпию и энтропию 6 м^3 насыщенного водяного пара при давлении P = 1,2 МПа и сухости пара x=0,9.

Задание 8

Определить расход тепла в пароперегревателе на 1 кг пара, если параметра при входе P_1 МПа и X_1 ; при выходе P_2 МПа и t 0 C.

Данные для решения задачи приведены в таблице10. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

таблица 10 *Таблица данных для решения задания.*

Последняя цифра	P_1	X_1	Предпоследняя	P_2	t
цифра	МПа		цифра шифра	МПа	0 C
0	5,5	0,87	0	120	400
1	4,5	0,86	1	150	450
2	3,5	0,88	2	90	500
3	2,7	0,85	3	80	550
4	2,5	0,90	4	140	350
5	1,3	0,89	5	50	600
6	1,1	0,94	6	70	525
7	0,9	0,96	7	35	475
8	0,7	0,98	8	20	300
9	0,5	0,97	9	25	325

Контрольные вопросы

- 1. Что такое влажный насыщенный, сухой насыщенный и перегретый пар?
- 2. Проанализируйте процесс параобразования в PV, T-s и h-s координатах.
- 3. Как определяется максимальный расход идеального газа?
- 4. Как определяется длина сопла Лаваля?

Х. Циклы паросиловых установок

На рис 16 приведена условная схема паросиловой установки. Пар из парового котла ΠK поступает в пароперегреватель $\Pi \Pi$, откуда он направляется в турбину T и далее в конденсатор K. В конденсаторе с помощью охлаждающей воды, подаваемой циркуляционным насосом ΠH , от пара отводится тепло, и он конденсируется. Образовавшийся конденсат питательным насосом ΠH подается в котел, и цикл повторяется вновь.

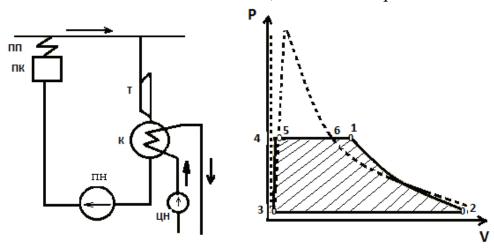


Рис16.Принципиальная схема паросиловой установки

Puc 17. Теоретический цикл Ренкина в диаграмме PV.

На рис.17дан теоретический цикл Ренкина в диаграмме PV.

Точка 3 характеризует состояние воды по выходе из конденсатора, линия 3-4 - процесс повышения давления в питательном насосе, 4-5-подогрев воды в паровом котле, точка 5-состояние воды при температуре насыщения, 5-6-парообразование в котле, 6-1 перегрев пара в пароперегревателе. Точка 1 характеризует состояние пара, поступившего в турбину; 1-2-адиабатное расширение пара в турбине; точка 2-состояние отработавшего пара, выходящего из турбины; 2-3- процесс конденсации пара в конденсаторе.

Так как по сравнению с объемами пара объемы жидкости очень малы, то ими при не очень высоких давлениях пренебрегают. Кривая процесса сжатия жидкости при этом совпадает с осью ординат, и цикл получает вид изображенный на рис. 18.

Этот же цикл в диаграмме Ts показан на рис. 19. Кривая 3-4-изображает нагревание воды в паровом котле. Точка 4 соответствует температуре

кипящей воды при давлении P_1 в котле. Площадь, лежащая под кривой 3-4, измеряет количество тепла, подведенного к воде при ее нагреве до точки кипения. Прямая 4-5 изображает процесс парообразования. Точка 5 соответствует состоянию сухого насыщенного пара. Площадь 4-5-8-7-4 соответствует теплота парообразования r. Кривая 5-1изображает процесс перегрева пара в пароперегревателе, а точка 1-состояние перегретого пара после пароперегревателя.

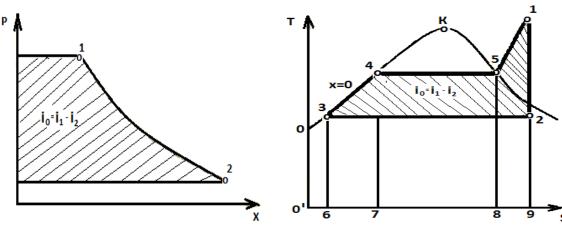


Рис18.Кравая процесс сжатия жидкости

Рис19.Кравая нагревания воды

Площадь 5-1-9-8-5, лежащая под кривой 5-1, соответствует теплоте перегрева, площадь 0-4-5-1-9-0-0. энтальпии (i_1) перегретого пара в точке 1. Энтальпия воды i_2 , поступающей в котел, изображается площадью 0-3-6-0-0. Таким образом, для получения 1 κ 2 пара в котле затрачивается i_1 - i_2 единиц тепла (площадь 3-4-5-1-9-6-3).

Прямая 1-2 изображает адиабатное расширение пара в турбине. Точка 2 соответствует состоянию отработавшего пара при давлении P_2 . Энтальпия его (i_1) изображается площадью $0-3-2-9-0^l-0$. Прямая 2-3 изображает процесс конденсации пара, причем площадь 2-3-6-9-2, лежащая под прямой 2-3, соответствует количеству тепла, отнимаемого от $1 \kappa 2$ пара в конденсаторе, т. е. площадь $2-3-6-9-2=i_2-i_2^l$.

Таким образом, количество тепла, подведенного к 1 кzпара в этом цикле, равно i_2 – i_2^1 .

Количество же тепла, отведенного от 1 κz пара, равно $i_2 - i_2^1$, следовательно, количество тепла, затраченного на производство работы и отнесенного к 1 κz пара, составляет

$$\begin{array}{c|c}
i_1 & 1 \\
\hline
 & t_1 \\
\hline
 & t_2 = i_2 \\
x = 1 \\
\hline
 & x_1
\end{array}$$

$$i_1 - i_2 = l_0$$
 (130)

Рис 20. Перегретого пара

и изображается площадью 3-4-5-1-2-3.в диаграмма is

Термическийк.п.д. цикла Ренкина*есть отношение* полезно использованного тепла ко всему затраченному, т. е.

$$\eta_t = \frac{i_1 - i_2}{i_1 - i_2'} \tag{131}$$

где i_1 и i_2 - начальное и конечное значения энтальпии пара в адиабатном процессе расширения его в турбине;

 i_2 - энтальпия кипящей жидкости (конденсата) при давлении P_2 .

Величины, входящие в формулу (131), могут быть определены при помощи диаграммы is. Для перегретого пара начальное состояние находится в пересечении изобары p_1 и изотермы t_1 (рис. 20): для влажного в пересечении изобары p_1 и линии сухости x_1 ; для сухого насыщенного в пересечении изобары p_1 и верхней пограничной кривой. Проектируя точку 1, изображающую начальное состояние пара, на ось ординат, находим энтальпию пара i_1 , а проведя из нее адиабату расширения (прямую, параллельную оси ординат) до конечной изобары, получаем точку 2, характеризующую состояние отработавшего пара. По этой точке находим энтальпию пара в конечном состоянии i_2 . Отрезок 1—2 в определенном масштабе дает значение величины i_1 — i_2 .

Энтальпию конденсата i_2 находят по температуре t_H , соответствующей конечному давлению p_2 . Для этого по изобаре p_2 надо подняться до верхней пограничной кривой. По значению изотермы, проходящей через точку пересечения изобары $p_2 c$ верхней пограничной кривой, получим $t_2 \approx i_2$. Более точно значение i_2 определяют по таблицам насыщенного пара.

Циклы Ренкина для сухого насыщенного и влажного насыщенного пара в диаграмме *Ts* представлены на рис. 21.

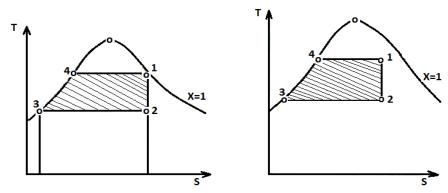


Рис 21. Циклы Ренкина для сухого насыщенного и влажного насыщенного пара в диаграмме Ts

Подробное исследование термического к. п. д. цикла Ренкина при изменении параметров начального и конечного состояния рабочего тела приводит к выводу, что термический к. п. д. этого цикла повышается с увеличением начального давления и начальной температуры и с уменьшением давления P_2 в конденсаторе.

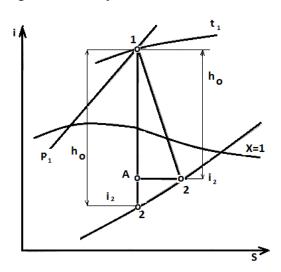
Удельный расход пара и тепла при осуществлении идеального цикла Ренкина определяется следующим образом:

$$d_0 = \frac{360_0}{i_1 - i_2} = \frac{360_0}{h_0} \kappa \varepsilon (\kappa Bm \cdot u)$$
 (132)

$$d_0 = \frac{86_0}{i_1 - i_2} = \frac{86_0}{h_0} \kappa z (\kappa B m \cdot u) \tag{133}$$

если значения i взяты в $\kappa \kappa a \pi / \kappa z$.

Величину $h_0 = i_1 - i_2$ называют располагаемым теплоперепадом.


Так как на 1 кг пара в цикле Ренкина расходуется тепла

$$i_1 - i_2$$

то удельный расход тепла на 1 квт ч

$$q = d_0(i_1 - i_2) \kappa \mathcal{A} \mathcal{H} (\kappa B m \bullet u)$$
 или ккал/($\kappa B m \bullet u$). (134)

формулы (131)—(134) определяют термический к. п. д. и удельные расходы пара и тепла в идеальном цикле паросиловой установки. Действительный цикл сопровождается неизбежными потерями, вследствие чего удельные расходы пара и тепла увеличиваются. Так, в паровой турбине процесс расширения пара

сопровождается потерями, связанными главным образом с трением.

Работа трения превращается в тепло, повышающее энтальпию пара в конечном состоянии. Поэтому в действительном процессе, протекающем необратимо, а следовательно, с увеличением энтропии, кривая процесса отклонится вправо (рис. 22). Конечное состояние пара изобразится уже не точкой 2, лежащей на пересечении адиабаты 1—2 и изобары p_2 , а точкой,

Рис 22. Кривая процесса в диаграмма is лежащейна той же изобаре, но расположен ной правее. Условно действительный процесс расширения изображают линией 1-2 д.

Очевидно, полезная работа в действительном цикле (или, как ее называют, *внутренняя работа*)

$$l_i = i_1 - i_{2\delta} \tag{135}$$

будет меньше работы (l_{\bullet}) идеального цикла.

Отношение

$$\frac{l_i}{l_0} = \frac{i_1 - i_{2\delta}}{i_1 - i_2} = \eta_0 \tag{136}$$

называют относительным внутренним к. п. д. Этот коэффициент характеризует степень совершенства действительного процесса в сравнении с идеальным.

Абсолютный внутренний к. п. д. представляет собой отношение полезно использованного тепла в действительном процессе к затраченному теплу:

$$\eta_0 = \frac{i_1 - i_{2\partial}}{i_1 - i_2}.\tag{137}$$

Из сопоставления формул (131), (136) и (137) получаем

$$\eta_i = \eta_t \eta_{0i}. \tag{138}$$

Из формулы (136) получаем

$$i_{2\partial} = i_1 - (i_1 - i_2)\eta_{0i} = i_1 - h_0\eta_{0i}. \tag{139}$$

Это уравнение позволяет по заданном $\eta_{\scriptscriptstyle 0i}$ найти точку $2\,\partial$.

Для этого нужно (рис. 22) из начальной точки 1 провести адиабату 1-2, затем от точки 2 отложить вверх отрезок 2-A и через точку A провести горизонталь. Пересечение ее с конечной изобарой p_2 даст точку 2∂ .

Внутренняя работа, произведенная турбиной, не может быть полностью использована. Часть ее расходуется на механические потери в трущихся частях двигателя. Поэтому работа, полученная на валу турбины, или эффективная работа l_{ϵ} , меньше внутренней работы l_{ϵ}

Отношение

$$\frac{l_e}{l_i} = \eta_{\scriptscriptstyle M}. \tag{140}$$

есть механический. к.п. д. турбины.

Так как преобразование механической энергии в электрическую связано с потерями в генераторе, то вводят еще понятие к. п. д. генератора:

$$\eta_{e} = \frac{l_{g}}{l_{e}},\tag{141}$$

где l_{\circ} - работа 1 $\kappa 2$ пара, превращенная в электрическую энергию.

Таким образом, экономический к. п. д. электростанции

$$\eta_{cm} = \eta_{\kappa,y} \eta_n \eta_t \eta_{0i} \eta_m \eta_{\varepsilon}. \tag{142}$$

Пример 15.

Определить состояния пара за турбину и подсчитать внутренний к.п.д. паротурбинной установки, если начальные параметры p_1 =13,0 МПа и

 t_I =565 °C, давление в конденсаторе p_2 =40 гПа, внутренние относительные к.п.д. турбины и питательного насоса соответственно $\eta_{0i}^{\rm T}=0.85$ и $\eta_{0i}^{\rm H}=0.87$

Решение

Цикл, по которому работает установка, изображен на рис 23

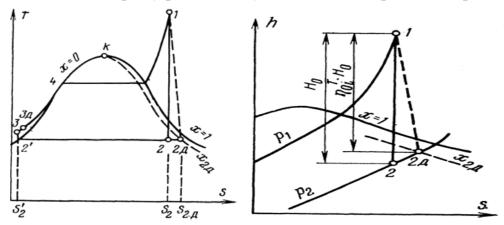


Рис 23 К пример 15

Сначала определим состояние пара в конце изоэнтропного расширения пара в турбине. Начальное энтальпию и энтропию находим по таблицам [9]: h_1 =3506 кДж/кг и s_1 =6,653 кДж/(кг*К). Энтальпию пара в точке 2 находим, рассчитывая изоэнтропный процесс 1-2:

$$x_2 = \frac{6,653 - 0,4225}{8,473 - 0,4225} = 0,774$$

$$h_2 = h_2' + r_2 x_2 = 121 + 2433 * 0,774 = 2004$$
 кДж/кг

Таким образом, изоэнтропный теплоперепад.

$$H_0 = h_1 - h_2 = 3506 - 2004 = 1502$$
 кДж/кг

По определению

$$\eta_{0i}^{\mathrm{T}} = \frac{h_1 - h_{2\Lambda}}{h_1 - h_2} = \frac{h_1 - h_{2\Lambda}}{H_0}$$

Следовательно,

$$h_{2 extstyle \mathbb{Z}} = h_1 - \eta_{0i}^{ extstyle T} H_0 = 3506 - 0,85*1502 = 2229$$
 кДж/кг

Зная энтальпию легко найти остальные параметры при $p_2 = 40$ гПа. Для этого сначала необходимо найти степень сухости в конце действительного процесса расширения:

$$x_{2,\text{I}} = \frac{h_{2,\text{I}} - h_2'}{r_2} = \frac{2229 - 121}{2433} = 0,866$$

Внутренний к.п.д. цикла определяется по формуле

$$\eta_i = \frac{H_0 \eta_{0i}^{\text{T}} (h_3 - h_{2'}) / \eta_{0i}^{\text{H}}}{h_1 - h_{3 \text{A}'}}$$

Находим энтальпию воды после теоретического и действительного (с учетом потер) сжатия в насосе. Энтальпия h_2 , $=h_2'=121,4\frac{\kappa Дж}{\kappa \Gamma}$ энтропия s_2 , $=s_2'=0,4225\frac{\kappa Дж}{\kappa \Gamma*K}$. Энтальпия в точке 3 определяется в результате изоэнтропного процесса 2-3 (s_2 =const). Интерполируя табличные данные [9, табл 3], находим при давлении p_3 = p_1 =13,0 МПа и s_3 =0,4225 $\kappa Дж/(\kappa r^*K)$ энтальпию

 $h_3=134,8$ кД . Разность $h_3-h_2=134,8-121,4=13,4$ кДЖ/кг представляет собой теоретическую работу насоса.

Энтальпия в конце сжатия h_{3J} , с учетом потерь равна:

$$h_{3 \centsymbol{1/2}} = rac{h_3 - h_2'}{\eta_{0i}^{
m H}} = 121,\!4 + rac{134,\!8 - 121,\!4}{0,\!87} = 136,\!8 \,
m KДж/кг$$

Таким образом:

$$\eta_i = \frac{1502 * 0,85 - (134,8 - 121,4)/0,87}{3506 - 137} = 0,374$$

Определяем термический к.п.д. цикла Ренкина (который не учитывает nomepu):

$$\eta_t = \frac{h_1 - h_2 - (h_3 - h_2')}{h_1 - h_3} = \frac{(3506 - 2004) - (134, 8 - 121, 4)}{3506 - 135} = 0,442$$

Если при определении внутреннего к.п.д. установки пренебречь работой насоса, то окажется, что

$$\eta_i \approx \eta_t' = \frac{H_0 \eta_{0i}^{\mathrm{T}}}{h_1 - h_2'} = \frac{h_1 - h_2}{h_1 - h_2'} \eta_{0i}^{\mathrm{T}} = \eta_t' \eta_{0i}^{\mathrm{T}} = 0,444 * 0,85 = 0,377$$

3десь $\eta_t'=(h_1-h_2)$ / $(h_1-h_2')=\frac{3506-2004}{3506-121}=0.444$ есть несколько завышенный термический к.п.д. цикла, не учитывающий, работу насоса.

Разница η_t и η_t' в нашем случае составляет 0,53%. Приблизительно такой же будет ошибка и в определении расхода топлива. Тем не менее соотношение

$$\eta_i = \eta_{0i} \eta_t$$

Широко применяется в теплотехнических расчетах. Его можно считать вполне удовлетворительным при невысоких параметрах пара перед турбиной, когда работой насоса можно пренебрегать.

Задача 26.

Определить термический к.п.д. и мощность паровой машины, работающей по циклу Ренкина при следующих условиях: при впуске пар имеет давление $P_1=1,5\,$ МПа и температуру $t_1=300\,$ °C, давление пара при выпуске $P_2=0,01\,$ МПа, часовой расход пара составляет $M=940\,$ кг/час

Задача 27 Сравнить термический к.п.д. идеальных циклов, работающих при одинаковых начальных и конечных давлениях $P_1 = 2$ МПа и $P_2 = 0.02$ МПа, если в одном случае пар влажный со степенью сухости x = 0.9, в другом — пар сухой и насыщенный, в третьем — перегретый с температурой $t_1 = 300$ °C.

Задача 28.

В паровую установку, работающую по циклу Ренкина, подается нагретый пар под давлением $P_1 = 9$ МПа и с температурой $t_1 = 450$ °C. В паровой турбине давление P' = 2,9 МПа и оно не изменяется после расширения, нагревается до температуры t' = 350 °C и еще давление в турбине $P_2 = 0,004$ МПа расширяется. Определить к.п.д. цикла.

Задание 9.

В пароперегреватель парового котла поступает пар при абсолютном давлении P_1 и сухости x_1 . Из перегревателя пар поступает в паровую турбину, где адиабатно расширяется до давления P_2 . Определить количество теплоты, сообщаемое 1кг пара в перегревателе, располагаемое теплопадение и к.п.д. цикла Ренкина, если известно, что на входе в конденсатор сухость пара X_2 .

Определить также указанные величины, если перегрев пара в перегревателе увеличится на Δ t, а расширение будет производится до того же давления P_2 (значение X_2 в этом случае будет другое).

Изобразить принципиальную схему простейшей паросиловой установки и дать к ней необходимые пояснения. Показать TS и PV-диаграммах оба варианта перегрева и расширения пара. Потерей давления в пароперегревателе пренебречь. Данные для решения задачи приведены в таблице 11. Выбор данных производится по последней и предпоследней цифрам шифра (номер рейтинговой книжки)

таблица 11 Таблица данных для решения задания

Последняя	P_1	X_1	Предпоследняя	P_2	X_2	${\Delta t_1} {^0}$ C
цифра	МПа		цифра шифра	МПа		0 C
шифра						
0	0,5	0,97	0	120	0,98	110
1	0,7	0,98	1	150	0,99	120
2	0,9	0,96	2	90	0,95	100
3	1,1	0,94	3	80	0,97	90
4	1,3	0,89	4	140	0,96	110
5	2,5	0,90	5	50	0,98	85
6	2,7	0,85	6	70	0,95	60
7	3,5	0,88	7	35	0,94	105
8	4,5	0,86	8	20	0,96	60
9	5,5	0,87	9	25	0,98	115

ХІ. Теплопередача

При рассмотрении переноса тепла от одной (горячей) жидкости к другой (холодной) через твердую стенку задача еще более усложняется. Здесь процесс определяется совокупным действием рассмотренных элементарных явлений. В качестве примера возьмем паровой котел.

От горячих газов к внешней поверхности кипятильных труб перенос тепла осуществляется теплопроводностью, конвекцией и лучеиспусканием; через стенку трубы-только теплопроводностью; от внутренней поверхности к водетолько конвекцией (соприкосновением). Отсюда следует, что теплопроводность, конвекция и тепловое излучение являются лишь частными условиями общего процесса теплопередачи. Количественной характеристикой этого процесса является коэффициент теплопередачи k, численная величина которого определяет количество тепла, переданного в час от одной жидкости к другой при разности температур между ними в один градус. При этом расчетная формула имеет следующий вид:

$$Q = k \left(t_{f,1} - t_{f,2} \right) \frac{\kappa \kappa a \pi}{v_{ac}} \tag{143}$$

В зависимости от принятой схемы расчета значение Q может быть отнесено к единице длины, единице поверхности или единице объема. При этом его размерность, а также размерность коэффициента теплопередачи соответственно изменяются.

Физическая сторона сложного процесса теплопередачи всецело определяется явлениями теплопроводности, конвекции и теплового излучения, а коэффициент теплопередачи является лишь количественной, чисто расчетной характеристикой процесса. Взаимная связь между коэффициентами теплопередачи, с одной стороны, и коэффициентами теплопроводности и теплоотдачи, с другой, зависит от формы стенки, отделяющей горячую жидкость от холодной; эта связь рассматривается ниже.

XII. Теплоотдача при вынужденном продольном обтекании плоской поверхности

Пример 16. Тонкая пластина длиной l_0 =2 M и шириной а=1,5 м обтекается продольным потоком воздуха (рис. 24). Скорость и температура набегающего потока

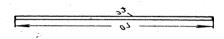


Рис.24. К пример 16.

равны соответственно $\omega_o=3$ м/сек и $t_o=20^\circ$ С. Температура поверхности

пластины $t_o = 90^{\circ}$ С.

Определить средний по длине пластины коэффициент теплоотдачи и количество тепла, отдаваемое пластиной воздуху.

Ответ. $\alpha = 4.87 \text{ вт/м}^2 * \text{град}$; Q=2650 вт.

Решение. Для воздуха при $t_o=20^{\circ}\text{C}$ $v=15,06*10^{-6}$ м2/сек; $\lambda=2,59*10^{-2}$ вт/м ·град, Pr=0,703.

Критерий Рейнольдса

Re=
$$\frac{\omega_0 l_0}{\gamma}$$
= $\frac{3*2}{15.06 \cdot 10^{-6}}$ = 3,98*10⁵< 5*10^{5*}

следовательно, режим течения в пограничном слое ламинарный. В этих условиях средняя но длине теплоотдача может быть рассчитана по формуле

$$Nu = 0.67Re^{1/2}Pr^{1/3}$$

где

$$Nu = \frac{al_o}{\lambda}$$
; $Re = \frac{\omega_o l_o}{v}$,

а физические параметры выбираются по температуре набегающего потока $t_{\rm o}$.

В рассматриваемом случае

$$Nu = 0.67 (3.98*10^5)^{1/2*} (0.703)^{1/3} = 375$$

и коэффициент теплоотдачи

$$\alpha = Nu \frac{\lambda}{l_0} = 375 * \frac{2,59 \cdot 10^{-2}}{2} = 4,87 \text{ вт/м}^2 \cdot \text{град}.$$

Количество передаваемого тепла с обеих сторон пластины

$$Q=\alpha\ (t_c-\!\!-t_0)F\!\!=\!\!4,87(90-\!\!-20)^*2^*1,5=2650\ \text{Bt}.$$

Пример 17.Вычислить для условий пример задачи 16 толщину гидродинамического пограничного слоя и значения местных коэффициентов теплоотдачи на различных расстояниях от передней кромки пластины: $x=0,1l_0$; $0,2l_0$ $0,5l_0$ и $1,0l_0$. Построить график

зависимости толщины гидродинамического пограничного слоя $\delta_{\scriptscriptstyle \rm I}$ и коэффициента теплоотдачи от расстояния $x/l_{\scriptscriptstyle 0}$.

Ответ

x/l _o	0,1	0,2	0,5	1,0
α_{π} MM	4,66	6,58	10,4	14,7
δ_{x1} в m/m^2 град	7,72	5,65	3,45	2,44

Решение

По условиям задачи 16 теплоотдача происходит в условиях ламинарного режима течения в по- граничном слое. Толщина ламинарного пограничного слоя и местный коэффициент теплоотдачи на расстоянии х от передней кромки пластины определяются по формулам:

$$\delta_{\pi} = \frac{4,64x}{\sqrt{Re_{x}}}$$

$$Nu_{x} = 0,335 \text{ Re}^{1/2} \text{ Pr}^{1/3}$$

где

$$Nu_z = \frac{a_x x}{\lambda}$$
 и $Re_x = \frac{w_0 x}{v}$.

Hа расстоянии $x=0,11_0$

$$\begin{aligned} \text{Re}_{\text{x}} &= \frac{\omega_o(0.1lo}{y} = \frac{3 \cdot 02}{15,06 \cdot 10^{-6}} = 3,98 * 10^4; \\ \boldsymbol{\delta}_{\text{л}} &= \frac{4,64 \cdot 0.2}{\sqrt{3,98 \cdot 10^4}} = 4,66 \cdot 10^{-3} \text{ M}; \\ \text{Nu}_{\text{x}} &= 0,335 \; (3.98 \bullet 10^4)^{1/2} \; (0,703)^{1/3} = 59,5; \\ a_{\text{x}} &= \text{Nu}_{\text{x}} \frac{\lambda}{r} = 59,5 \cdot \frac{2,59 \cdot 10^{-2}}{0.2} = 7,73 \; \text{вm/m}^2 \cdot \text{град} \end{aligned}$$

Аналогичным образом рассчитываются искомые величины при других расстояниях от передней кромки. Результаты расчетов приведены на рис. 25.

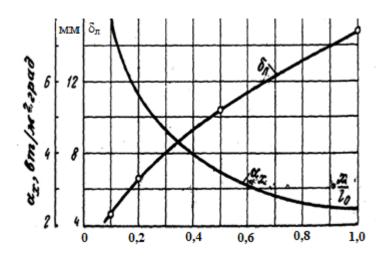


Рис.25. К пример 17.

Задача 29.. Тонкая пластина длиной l_o =25 мм обтекается продольным потоком жидкости. Температура набегающего потока t_o =20°C.

Вычислить критическую длину x_{Kp} , предельную толщину ламинарного пограничного слоя $\delta_{\pi,Kp}$, значения местных коэффициентов теплоотдачи и толщину ламинарного пограничного слоя на расстояниях $x=0,1l_o;~0,2l_o;~0,5l_o$ и $1,0l_o$ от передней кромки пластины.

Расчет произвести для двух случаев

- а) пластина обтекается воздухом при скорости набегающего потока $\omega_o = 10 \ \text{м/ce}\kappa;$
 - б) пластина обтекается водой при $\omega_o = 2 \ \text{м/сек}$.

При расчете принять $Re_{xkp} = 5 \cdot 10^5$.

Ответ. При обтекании воздухом $x_{\kappa p} = 0.75$ м; $\boldsymbol{\delta}_{n.\kappa p} = 4.93$ мм; при обтекании водой $x_{Kp} = 0.25$ м; $\boldsymbol{\delta}_{n.\kappa p} = 1.65$ мм.

x/l _o		0,1	0,2	0,5	1,0
a_x ,в $m/м^2$ град	Воздух	56,4	39,9	25,1	17,8
	Вода	4 820	3 420	2 150	1 520
$oldsymbol{\delta}_{\pi}$ mm	Воздух	0,635	0,895	1,42	2,00
	Вода	0,366	0,516	0,822	1,15

Задача 30. Вычислить для условий задачи 29 значения среднего коэффициента теплоотдачи и теплового потока на 1 пог. м пластины q_1 для воздуха и воды, если температура поверхности пластины $t_0 = 50^{\circ}$ C.

Ответ. При обтекании воздухом

$$a = 35,7$$
 вт/м $2*$ град; $q_l = 279$ вт/м.

При обтекании водой

$$a=3\ 050\ \text{em/m}2*\text{cpad};\ q_1=2,3*10^4\ \text{em/m}.$$

Задача 31. Тонкая константановая лента сечением 0,1x5 мм нагревается электрическим током силой l=20 а. Электрическое сопротивление 1 пог. м ленты $R_1 = 1,0$ ом/м.

Лента обтекается продольным потоком воды. Скорость и температура набегающего потока ω =5 м/сек и t_0 =10° С.

Определить температуру ленты на расстояниях 25 и 200 мм от передней кромки.

Ответ. При x=25 мм t_c =35,2°C; при x=200 мм t_c = 81,6°C.

Пример 18. Плоская пластина длиной t_0 = 1 м обтекается продольным потоком воздуха. Скорость набегающего потока ω_o =80 м/сек и температура воздуха t_o =10°C. Перед пластиной установлена турбулизирующая решетка, вследствие чего режим движения в пограничном слое на всей длине пластины турбулентный.

Вычислить среднее значение коэффициента теплоотдачи с поверхности пластины и значение местного коэффициента теплоотдачи на задней кромке.

Вычислить также толщину гидродинамического по- граничного слоя на задней кромке пластины.

Ответ. Средний коэффициент теплоотдачи a=202 в $m/м^2 \cdot zpad$., Местное значение коэффициента теплоотдачи при $x=t_o$ $a_x=l_o=157,5$ вt/m2 • град. Толщина гидродинамического пограничного слоя при $x=l_o$ $\delta_T=16,5$ мм.

Решение.

При температуре набегающего потока $t_0 = 10^{\circ} \text{C}$ физические свойства воздуха: v= 14,16 • 10^{-6} м2/сек; λ = 2,51 • 10^{-2} вт/м • град. Критерий Рейнольдса

Re =
$$\frac{\omega_0 l_0}{v}$$
 = $\frac{80 \cdot 1.0}{14.16 \cdot 10^{-0}}$ = 5,65*10⁶ > 5*10⁵

Режим движения в пограничном слое на пластине турбулентный.

Среднее значение коэффициента теплоотдачи при обтекании пластины воздухом для турбулентного пограничного слоя можно вычислить по формуле.

$$Nu = 0.032Re^{0.8}. (144)$$

Подставив рассчитанное значение числа Рейнольдса в (144), получим:

$$Nu = 0.032 (5.65 \cdot 10^6)^{0.8} = 8 050$$

откуда

$$\alpha = Nu\frac{\lambda}{l_0} = 8050 \bullet \frac{2,51 \cdot 10^{-2}}{1,0} = 202 \text{ вт/м}^2 \bullet \text{град.}$$

Для вычисления местного коэффициента теплоотдачи •при обтекании пластины воздухом и турбулентном пограничном слое можно воспользоваться следующей формулой:

$$Nu_x = 0.0255 (Re_x)^{0.8},$$
 (145)

где

$$Nu_x = \frac{a_x x}{\lambda}$$
 и $Re_x = \frac{\omega_o x}{y}$

Значение местного коэффициента теплоотдачи на задней кромке пластины найдем, положив $x=1_o$; тогда $Re_x=5,65\cdot10^6$;

$$Nu_x = 0.0255(5.65 \cdot 10^6)^{0.8} = 6280$$

И

$$a_{x=10} = N_{x=10} \frac{\lambda}{l_0} = 6280 \bullet \frac{2.51 \cdot 10^{-2}}{1.0} = .157,5 \text{ вт/м}^2 \cdot \text{град}.$$

Местную толщину турбулентного гидродинамического пограничного слоя можно вычислить по формуле:

$$\mathbf{\delta}_{\mathrm{T}} = \frac{0.37x}{\sqrt[5]{Re_{x}}} \tag{146}$$

Подставив значения известных величин, получим при $x=1_0$:

$$\delta_{\rm T} = \frac{0.37 \cdot 10}{\sqrt[5]{5.65 \cdot 10^6}} = 0.0165 \text{ M}$$

Задача 32. Для условий задачи 18 вычислить толщину гидродинамического пограничного слоя и местные значения коэффициентов теплоотдачи на расстояниях $x=0,1l_o$; $0,2l_0$; $0,5l_0$ и $0,8l_0$ от передней кромки пластины. Построить график изменения толщины гидродинамического пограничного слоя и местных значений коэффициента теплоотдачи по длине пластины.

Ответ. Результаты расчетов приведены на рис.26 и в следующей ниже таблице.

X,M	0.1	0,2	0.5	0,8
a_{x} ,вт/м 2 -град	256	219	185	165
$\boldsymbol{\delta}_{\mathrm{T}}$, MM	2,62	4,55	9,49	13,8

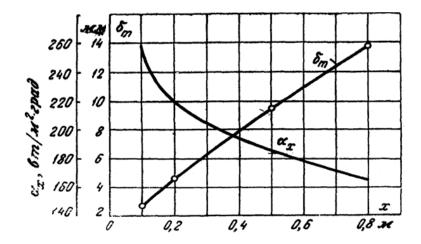


Рис.26. К задача 32.

Задача 33. Плоская пластина обтекается продольным потоком воздуха. Скорость и температура набегающего по- тока равны соответственно $\omega_0 = 6$ м/сек и t_o =20° С.

Вычислить количество тепла, отдаваемое воздуху, при условии, что температура поверхности пластины $t_o=80^\circ$ C, а ее размер вдоль потока l=1 м и поперек потока b=0.9 м*.

Ответ. Q = 1,3 кет.

Пример 19. Тонкая пластина длиной 1=0,2 м обтекается продольным потоком воздуха. Скорость и температура набегающего потока равны соответственно $\omega_o = 150$ м/сек и $t_0 = 20^\circ$ С.

Определить среднее значение коэффициента тепло- отдачи и плотность теплового потока на поверхности пластины при условии, что температура поверхности пластины $t_c = 50^\circ$ С. Расчет произвести в предположении, что по всей длине пластины режим течения в пограничном слое турбулентный.

Ответ. a=454 вт/м2 • град); q=9080 вт/м2.

Решение.

При температуре набегающего потока t_o =20°C физические свойства воздуха:

v= 15,06•
$$10^{\text{-}6}$$
 м2/сек; λ =2,59- $10^{\text{-}2}$ вт/м· град', c_{p} = 1,0 кдж/кг • град.

Число Рейнольдса

$$Re = \frac{\omega_0 l}{v} = \frac{150 \cdot 0.2}{15.06 \cdot 10^{-6}} = 1.99 \cdot 10^6$$

Число Маха

$$M = \frac{\omega}{a} = \frac{150}{344} = 0,436,$$

где скорость звука в воздухе

$$a = 20,1 \sqrt{T_0} = 20,1 \sqrt{293} = 344 \text{ m/cek}.$$

Для расчета теплоотдачи в воздушном потоке высокой дозвуковой скорости при $10^5 < \mathrm{Re} < 2 \cdot 10^6$ и 0,25 << M < 0,8 формула (144) справедлива при условии, что коэффициент теплоотдачи отнесен к разности между температурой t_o и адиабатической температурой стенки (собственной температурой поверхности) $t_{a,c}$:

$$t_{a.c} = t_0 + r \frac{\omega_0^2}{2_{cn}},$$

где коэффициент восстановления для продольно обтекаемой пластины при турбулентном пограничном слое можно принять равным г=0,89.

В рассматриваемом случае

$$Nu=0.032 \text{ Re}^{0-8}=0.032 (1.99 \cdot 10^6)^{0.8}=3500$$

И

$$a = Nu\frac{\lambda}{l} = 3500 \cdot \frac{2,59 \cdot 10^{-2}}{0.2} = 454 \text{ вт/м}^2 \cdot \text{град},$$

Адиабатическая температура стенки

$$t_{a,c} = 20 + 0.89 \cdot \frac{150^2}{2 \cdot 1 \cdot 10^3} = 30^{\circ} \text{C}$$

и плотность теплового потока

$$q = a (t_c - t_{a.c}) = 454 (50 - 30) = 9080 \text{ BT/m}2.$$

Задание 10. Вычислить среднее значение коэффициента теплоотдачи и количество тепла, отдаваемое с поверхности пластины, омываемой продольным потоком воздуха.

Скорость и температура набегающего потока равны соответственно ω_o м/сек и t_o °С. Температура поверхности пластины t_c °С. Длина пластины вдоль потока t=мм, а ее ширина b=мм.

Расчет произвести в предположении, что на всей длине пластины пограничный слой является турбулентным.

таблица 12 *Таблица данных для решения задания*

Последняя	\mathbf{W}_0	t_0	$t_{\rm c}$	Предпоследняя	1	В
цифра	м/сек	°C	°C	цифра шифра	MM	MM
шифра						
0	1,80	30	90	0	120	200
1	1,85	32	92	1	122	202
2	1,90	34	94	2	124	204
3	1,95	36	96	3	126	206
4	2,00	38	98	4	128	208
5	2,05	40	100	5	130	210
6	2,10	42	102	6	132	212
7	2,15	44	104	7	134	214
8	2,20	46	106	8	136	216
9	2,25	48	108	9	138	218

XIII. Теплопередача через плоскую стенку

Пусть имеется однородная плоская стенка с коэффициентом теплопроводности λ и толщиной δ .

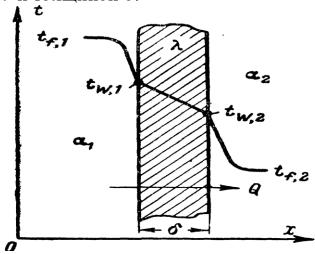


Рис.27.

По одну сторону стенки находится горячая жидкость с температурой $t_{\rm f,1}$ по другую-холодная с температурой $t_{\rm f,2}$ Температуры поверхностей стенки неизвестны, обозначим их буквами $t_{w,1}$ и $t_{w,2}$ (рис.27) .Температуры жидкостей и стенки изменяются лишь в направлении х. Значения

коэффициентов теплоотдачи определяются условиями состояния и движения жидкости; пусть на горячей стороне значение суммарного коэффициента теплоотдачи равноа₁ а на холодной a_2 .

При установившемся тепловом состоянии системы количество тепла, переданного от горячей жидкости к стенке, равно количеству тепла, переданного через стенку, и количеству тепла, от данного от стенки к холодной жидкости. Следовательно, для удельного теплового потока q можно написать следующих три выражения:

$$q = \alpha_1 (t_{f,1} - t_{w,1})$$

$$q = \frac{\gamma}{\delta} (t_{w,1} - t_{w,2})$$

$$q = \alpha_2 (t_{w,2} - t_{f,2})$$
(147)

Из этих уравнений затем определяются частные температурные напоры, а именно:

$$t_{f,1} - t_{w,1} = q * \frac{1}{\alpha_1}$$

$$t_{w,1} - t_{w,2} = q * \frac{\delta}{\lambda}$$

$$t_{w,2} - t_{f,2} = q * \frac{1}{\alpha_2}$$
(148)

Складывая эти уравнения, получим полный температурный напор:

$$t_{f,1} - t_{f,2} = q * \left(\frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2}\right)$$
 (149)

откуда определяется значение удельного теплового потока q:

$$q = \frac{1}{\frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2}} (t_{f,1} - t_{f,2}) = k(t_{f,1} - t_{f,2}) [\kappa \kappa a \pi / M^2 \text{ qac } ^{\circ}C]$$
(150)

Следовательно,

$$k = \frac{1}{\frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2}} \left[\kappa \kappa a \pi / M2 \text{ час } ^{\circ} C \right]$$
 (151)

Таким образом, чтобы вычислить значение коэффициента теплопередачи k для плоской стенки, необходимо знать толщину этой стенки ее коэффициент теплопроводности $\mathfrak X$ и значения коэффициентов теплоотдачи $\mathfrak a_I$ и $\mathfrak a_2$.

Величина, обратная коэффициенту теплопередачи, называется *термическим сопротивлением теплопередачи*. Из уравнения (151) эта величина равна:

$$\frac{1}{k} = \frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2} \tag{152}$$

Из этого соотношения следует, что общее термическое сопротивление равно сумме частных. Поэтому, если стенка состоит из нескольких слоев толщиной δ_1 , δ_2, δ_n коэффициенты теплопроводности их соответственно равны λ_1 , λ_2 λ_n , то термическое сопротивление теплопередачи будет равно:

$$\frac{1}{k} = \frac{1}{a_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \dots + \frac{\delta_n}{\lambda_n} + \frac{1}{a_2},$$

$$\frac{1}{k} = \frac{1}{a_1} + \sum_{i=1}^n \frac{\delta_i}{\lambda_i} + \frac{1}{a_2}$$
(152)

В этом случае выражение (151) для коэффициента теплопередачи k принимает следующий вид:

$$k = \frac{1}{\frac{1}{a_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \dots + \frac{\delta_n}{\lambda_n} + \frac{1}{a_2}}$$

$$k = \frac{1}{\frac{1}{a_1} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \frac{1}{a_2}}$$
(153)

или

ИЛИ

Подставляя значение удельного теплового потока q в уравнения (150) и, можно определить температуры стенки $t_{\rm w,1}$ и $t_{\rm w,2}$ а именно:

$$t_{w,1} = t_{f,1} - q * \frac{1}{a_1} \tag{154}$$

11

$$t_{w,2} = t_{f,1} - q * \left(\frac{1}{a_1} + \frac{\delta_1}{\lambda}\right) = t_{f,2} + q * \frac{1}{a_2}$$
 (155)

Температуры стенки можно определить и графически. Одним из таких способов был описан в [гл. 1.8. Л 12] Поэтому рассмотрим здесь лишь второй, который основан на замене термического сопротивления горячей и холодной жидкости термическим сопротивлением твердой стенки, с таким же коэффициентом теплопроводности, как и действительная стенка.

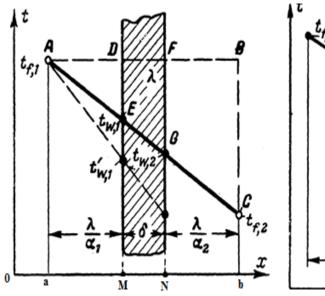
Пусть температуры наружных поверхностей воображаемой стенки соответственно равны температурам горячей и холодной жидкости $t_{w,1}$ и $t_{f,2}$. Количество передаваемого тепла остается без изменения. Тогда общая толщина Δ этой воображаемой стенки определится из соотношения:

$$q = k(t_{f,1} - t_{f,2}) = \frac{\lambda}{\Lambda} (t_{f,1} - t_{f,2}), \tag{156}$$

Откуда

$$\Delta = \lambda * \frac{1}{k} = \lambda \left(\frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2} \right) = \frac{\lambda}{a_1} + \delta + \frac{\lambda}{a_2} [M]$$
 (157)

Здесь величины $\frac{\lambda}{a_1}$ и $\frac{\lambda}{a_2}$ имеют линейную размерность м, ибо они определяют эквивалентные толщины. При графическом построении сначала строится реальная стенка толщиной δ (в любом масштабе), затем поодну сторону от нее в том же масштабе откладывается значение $\frac{\lambda}{a_1}$, а


по другуюзначение $\frac{\lambda}{a_2}$ (рис.28.). Из крайних точек а и b по вертикали в некотором масштабе откладываются значения температур $t_{f,1}$ ј и $t_{f,2}$. Полученные точки A и C соединяются прямой линией. Точки пересечения этой прямой с поверхностями действительной стенки дают значения искомых температур $t_{w,1}ut_{w,2}$.

. Действительно, из подобия треугольников АBC и ADE имеем, что

$$\frac{DE}{BC} = \frac{AD}{AB}$$

Откуда

$$DE = BC \frac{AD}{AB} = \left(t_{f,1} - t_{f,2}\right) * \frac{\frac{\lambda}{a_1}}{\frac{\lambda}{a_1} + \delta + \frac{\lambda}{a_2}} = k \frac{t_{f,1} - t_{f,2}}{a_1} = q * \frac{1}{a_1}$$
(158)

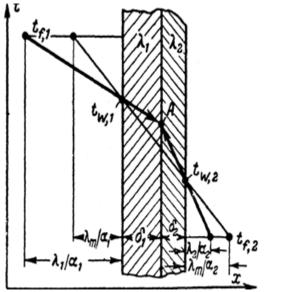


Рис.28. Графический способ определения температур на поверхности стенки

Рис. 29. Графическое определение температур на поверхности и в плоскости соприкосновения слоев двухслойной стенки.

Согласно уравнению (d),
$$q=\frac{1}{a_1}=t_{f,1}-t_{w,1}$$
; следовательно, отрезок ME=MD—ED= $t_{f,1}-\left(t_{f,1}-t_{w,1}\right)=t_{w,1}$)

Таким же путем можно показать, что отрезок NG в выбранном масштабе температуры равен $t_{w,2}$

Если стенка многослойная и требуется определить лишь температуру наружных поверхностей, то построение производят точно таким же образом, как и для однослойной стенки, имея дело со средним коэффициентом теплопроводности

 $\lambda_m = \frac{\sum_{i=l}^n \delta_1}{\sum_{i=l}^n \frac{\delta_i}{\lambda_i}}$ многослойной стенки (рис.29). Температура же между

слоями в точке A определяется по пересечению двух лучей (способ построения виден из фигуры).

Пример 20. Определить потерю тепла через квадратный метр кирпичной обмуровки котла толщиной δ =250 мм, если температура газов $t_{f,1}$ =600° C, температура воздуха $t_{f,2}$ =30° C, a_1 =20 ккал/м2 час °C, a_2 =8 ккал/м² час °C и λ =0,7 ккал\м час °C.

Решение.

Согласно формуле (153)

$$k = \frac{1}{\frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2}} = \frac{1}{\frac{1}{20} + \frac{0.25}{0.7} + \frac{1}{8}} = \frac{1}{0.05 + 0.36 + 0125} = \frac{1}{0.535} = 1.87 \frac{\text{ккал}}{\text{м}^2 \text{час}} \text{°C}$$

Подставляя это значение в формулу (147), имеем:

 $q=kig(t_{f,1}-t_{f,2}ig)=1,87(600-30)=1,87*570=1065$ ккал/м² час Наконец, из уравнений (154) и (155):

$$t_{w,1} = t_{f,1} - q * \frac{1}{a_1} = 600 - \frac{1065}{20} = 546 \text{ °C}$$
 $t_{w,2} = t_{f,2} + q * \frac{1}{a_2} = 30 + \frac{1065}{8} = 163 \text{ °C}.$

Задание 11:Определить потерю тепла через квадратный метр кирпичной обмуровки котла толщиной $\delta=mm$, если температура газов $t_{f,1}$ °C, температура воздуха $t_{f,2}=$ °C, $a_1=\kappa\kappa a\pi/m^2 vac$ °C и $\lambda=\kappa\kappa a\pi/m vac$ °C.

таблица 13

Таблица данных для решения задания

Последняя цифра шифра	δ мм,	t _{f,1} ° C,	t _{f,2} °C	Предпоследняя цифра шифра	а ₁ ккал/м2 час°С,	а ₂ ккал/м ² час °С	λ ккал\м час °С
0	240	600	30	0	18	8	0,7
1	242	602	32	1	19	9	0,8
2	244	604	34	2	20	10	0,9
3	246	606	36	3	21	11	1
4	248	608	38	4	22	12	1,1
5	250	610	40	5	23	13	1,2
6	252	612	42	6	24	14	1,3
7	254	614	44	7	25	15	1,4
8	256	616	46	8	26	16	1,5
9	258	618	48	9	27	17	1,6

XIV. Теплопередача через цилиндрическую стенку

Пусть имеется труба длиной l с внутренним диаметром d_1 и внешним d_2 . Стенка трубы однородна и ее коэффициент теплопроводности равен λ .

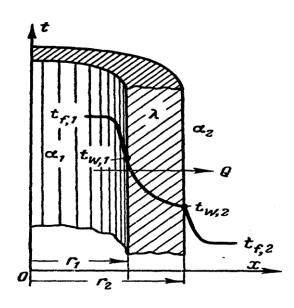


Рис.30. Теплопередача через цилиндрическую стенку.

Внутри трубы протекает горячая с температурой жидкость $t_{f.1}$, снаружи— холодная с температурой $t_{f,2}$; температуры поверхностей стенки неизвестны, обозначим их через $t_{w,1}$ и $t_{w,2}$ (Рис.30.). Температуры жидкости и стенки изменяются только направлении радиуса. Co стороны горячей жидкости суммарный коэффициент теплоотдачи равена а со стороны холодной a_2 .

При установившемся тепловом состоянии системы количество тепла, отданное от горячей жидкости к стенке, переданное через стенку и отданное от стенки к холодной жидкости, одно и то же. Следовательно, можно написать:

$$\frac{Q}{I} = q_l = a_1 \pi d_1 (t_{f,1} - t_{w,1}); \tag{159}$$

$$q_{l} = \frac{2\pi\lambda(t_{w,1} - t_{w,2})}{\ln\frac{d_{2}}{d_{1}}}$$
(160)

$$q_l = a_2 \, \pi d_2 \big(t_{w,2} - t_{f,2} \big); \tag{161}$$

Далее определяем частные температурные напоры:

$$t_{f,1} - t_{w,1} = \frac{ql}{\pi} * \frac{1}{a_1 a_1} \tag{162}$$

$$t_{w,1} - t_{w,2} = \frac{ql}{\pi} * \frac{l}{2\lambda} * ln \frac{d_2}{d_1}$$
 (163)

$$t_{w,2} - t_{f,2} = \frac{ql}{\pi} * \frac{1}{a_2 d_2} \tag{164}$$

Складывая уравнения системы (162),(163),(164) получим полный температурный напор:

$$t_{f,1} - t_{f,2} = \frac{ql}{\pi} \left(\frac{1}{a_1 d_1} + \frac{1}{2\lambda} ln \frac{d_2}{d_1} + \frac{1}{a_2 d_2} \right)$$
 (165)

Из уравнения (165) определяется значение теплового потока q₁;

$$q_l = \frac{\pi(t_{f,1} - t_{f,2})}{\frac{1}{a_1 d_1} + \frac{1}{2\lambda} l n \frac{d_2}{d_1} + \frac{1}{a_2 d_2}} = k_1 \pi \left(t_{f,1} - t_{f,2} \right)$$
ккал/м час , (166)

откуда линейный коэффициент теплопередачи (на 1 м длины трубы)

$$k_l = \frac{1}{\frac{1}{a_1 d_1} + \frac{1}{2\lambda} l n \frac{d_2}{d_1} + \frac{1}{a_2 d_2}}$$
[ккал/м час °С]. (167)

Обратная величина коэффициента теплопередачи іназывается полным линейным термическим сопротивлением- или линейным термическим сопротивлением теплопередачи.

Из уравнений (167) имеем:

$$\frac{1}{k_1} = \frac{1}{a_1 d_1} + \frac{1}{2\lambda} \ln \frac{d_2}{d_1} + \frac{1}{a_2 d_2} \tag{168}$$

Последнее означает, что полное сопротивление равно сумме частных—термического сопротивления теплопроводностистенки $\frac{1}{2\lambda} \ln \frac{d_2}{d_1}$ и термических сопротивлений теплоотдачи $\frac{1}{a_1 d_1}$ и $\frac{1}{a_2 d_2}$.

Для многослойной стенки трубы имеем:

$$\frac{1}{k_1} = \frac{1}{a_1 d_1} + \sum_{i=1}^{n} \frac{1}{2\lambda_i} \ln \frac{d_{i+1}}{d_i} + \frac{1}{a_2 d_{n+1}}$$
 (169)

$$k_1 = \frac{1}{\frac{1}{a_1 d_1} + \sum_{i=l_2 \lambda_i}^{n} l n \frac{d_{i+1}}{d_i} + \frac{1}{a_2 d_{n+1}}}$$
(170)

Чтобы определить неизвестные температуры стенки $t_{w,1}$ и $t_{w,2}$ надо значение q_1 [из уравнения (166)] подставить в уравнения (162), (163), (164). Решая их, получим:

$$t_{w,1} = t_{f,1} - \frac{q_1}{\pi} * \frac{1}{a_1 d_1} \tag{171}$$

$$t_{w,2} = t_{f,1} - \frac{q_1}{\pi} \left(\frac{1}{a_1 d_1} + \frac{1}{2\lambda} \ln \frac{d_2}{d_1} \right) = t_{f,2} - \frac{q_1}{\pi} * \frac{1}{a_1 d_1}$$
 (172)

Способ определения температуры между слоями описан [см. в гл. 1.,Л.12].

Расчетные формулы теплопередачи для трубы довольно громоздки, поэтому при практических расчетах применяются некоторые упрощения. Если стенка трубы не очень толста, то вместо формулы (166) в расчетах применяется формула для плоской стенки (150), которая в этом случае (в применении к трубе длиной 1 м) принимает следующий вид:

$$q_1 = k \pi d_x \left(t_{f,1} - t_{f,2} \right) = \frac{\pi d_x (t_{f,1} - t_{f,2})}{\frac{1}{a_1} + \frac{\delta}{\lambda} + \frac{1}{a_2}}$$
(173)

Где k- коэффициент теплопередачи для плоской стенки по формуле (151), ккал/м 2 час $^{\circ}$ С;

 d_x -средней диаметр стенки;

 δ -ее толщина, равная полуразности диаметров:

$$\delta = \frac{1}{2}(d_2 - d_1) \tag{174}$$

При этом, если $\frac{d_1}{d_2}$ >0,5, то погрешность расчета не превышает 4%. Эта погрешность снижается, если при выборе d_x соблюдать следующее правило:

1) если $a_1, > a_2$, то ${\bm d}_{\bm x} = {\bm d}_{\bm 2}$, ч

2) если
$$a_1 = a_2$$
, то $d_x = 0.5(d_1 + d_2)$; (175)

3) если $a_1 < a_2$, то $d_x = d_1$

т. е. при расчете теплопередачи по формуле (173) вместо dx берется тот диаметр, со стороны которого коэффициент теплоотдачи имеет меньшее значение. Если же значения коэффициентов теплоотдачиа₁и а₂ одного порядка, то d_x равно среднеарифметическому между внутренним d_1 , и внешним d_2 диаметрами трубы. При проведении расчетов как по формуле (166), так и по формуле (173) всегда следует иметь в виду, что в целях упрощения расчета относительно малыми сопротивлениями следует пренебрегать.

Пример 21. Паропровод диаметром 200/216 *мм* покрыт 120 мм слоем совелитовой изоляции, коэффициент теплопроводности которой λ_2 =0,1 $\kappa\kappa an/muac$ °C. Температура пара $t_{f,1}$ =300° С и окружающего воздуха $t_{f,2}$ =25°C. Кроме того, задано, что λ_2 =40 $\kappa\kappa an/muac$ °C, a_1 =100 и a_2 =8,5 $\kappa\kappa an/m^2uac$ °C. Требуется определить k_l , q_l и $t_{w,2}$.

Согласно условию задачи $d_{1=}0,2$ м, $d_{2}=0,216$ м и $d_{3}=0,456$ м.

Решение.

Далее на основании формулы (170) имеем:

$$k_1 = \frac{1}{\frac{1}{a_1 d_1} + \frac{1}{2\lambda_1} ln \frac{d_2}{d_1} + \frac{1}{2\lambda_2} ln \frac{d_3}{d_2} + \frac{1}{a_2 d_3}} = \frac{1}{\frac{1}{100*0,2} + \frac{2,3}{2*40} lg \frac{216}{200} lg \frac{416}{216} + \frac{1}{8,5*0,456}}$$

$$= \frac{1}{0,05 + 0,0009 + 3,73 + 0,258} = \frac{1}{4,04}$$

$$k_1 = 0,248 \text{ккал/м час °C}$$

Первые два члена термического сопротивления по сравнению с остальными малы, при расчетах ими можно пренебречь. На основании формулы (173)

$$q_1 = k_1\pi ig(t_{f,1} - t_{f,2}ig) = 0$$
, 248 $*$ 3, 14 $*$ 275 $=$ 214ккал/м час

И, наконец, согласно по формуле:

$$t_{w,2} = t_{f,2} + \frac{q_1}{\pi} * \frac{1}{a_2 d_3} = 25 + \frac{214}{3,14} * 0,258 = 25 + 17,5 = 42,5$$
°C.

XV. Теплопередача через шаровую стенку

Пусть внутренний диаметр шара равен d_1 внешний d_2 коэффициент теплопроводности стенки λ . Внутри шара находится горячая жидкость с температурой $t_{f,1}$ снаружи-холодная с температурой $t_{f,2}$ Значения коэффициентов теплоотдачи соответственно равны a_1 и a_2 . Температуры поверхностей стенки неизвестны, обозначим их через $t_{w,1}$ и $t_{w,2}$ (фиг- 7-6).

При стационарном тепловом состоянии системы количество тепла, переданное от горячей жидкости к холодной, можно выразить тремя уравнениями:

$$Q = a_1 \pi d_1^2 (t_{f,1} - t_{w,1}); \tag{176}$$

$$Q = \frac{2\pi\lambda}{\frac{1}{d_1} - \frac{1}{d_2}} (t_{w,1} - t_{w,2}); \tag{177}$$

$$Q = a_2 \pi d_1^2 (t_{w,2} - t_{f,2}); \tag{178}$$

Из этих уравнений определяется значение Q:

$$Q = \frac{\pi(t_{f,1} - t_{f,2})}{a_1 d_1^2 + \frac{1}{2\lambda} \left(\frac{1}{d_1} - \frac{1}{d_2}\right) + \frac{1}{a_2 d_2^2}} = \frac{k_{\text{II}} \pi(t_{f,1} - t_{f,2}) \text{ккал}}{\text{час}}$$
(179)

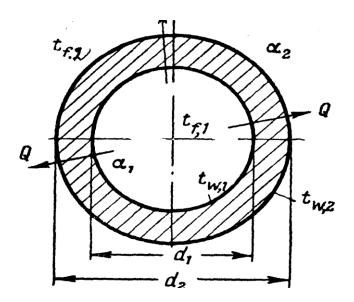


Рис.31. Теплопередача через шаровую стенку.

Следовательно, коэффициент теплопередачи для шаровой стенкиопределяется следующим соотношением1:

$$\mathbf{k}_{\text{III}} = \frac{1}{a_1 d_1^2 + \frac{1}{2\lambda} \left(\frac{1}{d_1} - \frac{1}{d_2}\right) + \frac{1}{a_2 d_2^2}}$$
ккал/час °С (180)

Обратная величина $\frac{1}{k_{\text{ш}}}$ называется термическим сопротивлением теплопередачи шаровой стенки:

$$\frac{1}{k_{III}} = a_1 d_1^2 + \frac{1}{2\lambda} \left(\frac{1}{d_1} - \frac{1}{d_2} \right) + \frac{1}{a_2 d_2^2}$$
 (181)

При практических расчетах надо проверять соотношение; термических сопротивлений; относительно малыми из них всегда можно пренебречь.

XVI. Теплопередача через ребристую стенку

При теплопередаче через плоскую стенку термические сопротивления теплоотдачи определяются значениями a_1 и a_2 и равны $\frac{1}{a_1}$ и $\frac{1}{a_2}$ При теплопередаче через цилиндрическую стенку термические сопротивления

определяются не только значениями коэффициентов теплопередачи а, но и значениями диаметров d и $\frac{1}{a_1 d_1^2}$ и $\frac{1}{a_2 d_1^2}$. Это обстоятельство обусловливается тем что внешняя поверхность трубы и шара больше внутренней. Из этого следует, что если, а мало, то. термическое сопротивление теплоотдачи может быть уменьшено путем увеличения — оребрения — поверхности нагрева. Рассмотрим плоскую стенку толщиной δ , коэффициент теплопроводности которой равен δ . Одна сторона этой стенки снабжена ребрами из того же материала (фиг. 7-7).

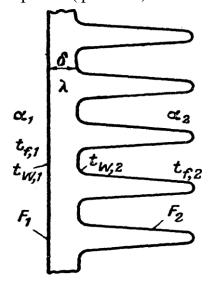


Рис.31. Теплопередача через ребристую стенку

С гладкой стороны поверхность равна F_1 , а с оребренной F_2 ; последняя составляется из поверхности ребер и поверхности самой стенки между ребрами. Температура горячей жидкости, омывающей гладкую сторону, равна $t_{f,1}$ v и температура холодной омывающей оребренную жидкости, сторону, равна $t_{f,2}$; соответственно температуры поверхностей $t_{w,1}$ и $t_{w,2}$. Значения коэффициентов теплоотдачи равны а₁и а₂ причем $a_{2} < a_1$

При установившемся тепловом состоянии системы количество переданного тепла Q может быть выражено следующими тремя уравнениями:

$$Q = a_1 F_1 = (t_{f,1} - t_{w,2}); (182)$$

$$Q = \frac{\lambda}{\delta} F_1 (t_{w,1} - t_{w,2}); \tag{183}$$

$$Q = a_2 F_2 (t_{w,2} - t_{f,2}) (.184)$$

Определяя отсюда частные температурные напоры, получим:

$$t_{f,1-}t_{w,2} = Q\frac{1}{a_1F_1}; (185)$$

$$t_{w,1} - t_{w,2} = Q \frac{\lambda}{\delta} \frac{1}{F_1}; \tag{186}$$

$$t_{w,2} - t_{f,2} = Q (187)$$

Складывая уравнения системы(185), (186), (187)., получим полный температурный напор:

$$t_{f,1} - t_{f,2} = Q(\frac{1}{\alpha_1 F_1} + \frac{\delta}{\lambda} \frac{1}{F_1} + \frac{1}{\alpha_2 F_2})^{\circ} C$$
 (188)

Из уравнения (188) определяется значение Q:

$$Q = \frac{1}{\frac{1}{\alpha_1 F_1} + \frac{\delta 1}{\lambda F_1} + \frac{1}{\alpha_2 F_2}} (t_{f,1} - t_{f,2}) = k_p (t_{f,1} - t_{f,2}) \frac{\text{ккал}}{\text{час}}$$
(189)

Откуда

$$\boldsymbol{k}_{p} = \frac{1}{\frac{1}{\alpha_{1}F_{1}} + \frac{\delta 1}{\lambda F_{1}} + \frac{1}{\alpha_{2}F_{2}}} \begin{bmatrix} \frac{\text{KKAJ}}{\text{YAC}} \, ^{\circ}\text{C} \end{bmatrix}$$
 (190)

Если же расчет вести на единицу гладкой поверхности, то получим :

$$q_1 = \frac{Q}{F_1} = k_1 (t_{f,1} - t_{f,2})_{\frac{\text{KKAJI}}{M^2 \text{vac}}},$$
 (191)

где

$$k_1 = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2} + \frac{F_1}{F_2}} \quad \left[\frac{\text{ккал}}{\text{m}^2} \,\text{m}^2 \,\text{час °C} \right]$$
 (192)

Если расчет вести на единицу ребристой поверхности, то расчетные уравнение принимает следующий вид:

$$q_2 = \frac{Q}{F_2} = k_2 (t_{f,1} - t_{f,2}) \frac{\text{ккал}}{\text{м}^2 \text{час}},$$
(193)

Где

$$\mathbf{k}_{2} = \frac{1}{\frac{1}{\alpha_{1}F_{1}} + \frac{\delta F_{2}}{\lambda F_{1}} + \frac{1}{\alpha_{2}}} \left[\frac{\text{ккал}}{\alpha_{1}} \,\text{M}^{2} \,\text{час °C} \right]$$
 (194)

Таким образом, если ребристая поверхность задана и значения коэффициентов теплоотдачи a_1 , и a_2 известны, то расчет теплопередачи через такую стенку никаких трудностей не представляет. При этом необходимо следить лишь за тем, по какой поверхности ведется расчет, ибо в зависимости от этого числовые значения коэффициента теплопередачи будут различны [сравни уравнения (190), (192) и (194)]. Отношение оребренной поверхности F_2 к гладкой F_1 называется коэффициентом оребрения.

При выводе расчетных уравнений предполагалось, что температура $t_{w,2}$ постоянна по всей поверхности. В действительности это не так; вследствие термического сопротивления температура ребра у вершины ниже, чем у

основания. Точно так же вследствие сложности конфигурации поверхности и неодинаковости ее температуры теплоотдача отдельных элементов различна. При этом очень трудно учесть влияние лучистого теплообмена. Правильное значение коэффициента теплоотдачи для ребристых поверхностей может быть установлено лишь на основе эксперимента.

Наряду с расчетом теплопередачи через ребристую стенку во многих случаях требуется рассчитать сначала само оребрение, т. е. установить необходимые размеры ребер и их количество. При этом в зависимости от назначения поверхности ставятся различные требования: в одних случаях требуется эффективное использование материала, в других максимальная теплопередача, в третьих — минимальные размеры теплообменника или минимальный вес и т. п. В целом, решение этой задачи очень сложно и в большинстве случаев оно может быть выполнено лишь приближенно. Подробнее о расчете теплопередачи через ребро[см. в § 11-2.,12]

Область применения ребристых поверхностей в технике весьма широка. В основном они применяются для выравнивания термических сопротивлений теплоотдачи, т. е. в таких случаях, когда с одной стороны поверхности нагрева наблюдаются большие значения коэффициента теплоотдачи, а с другой — малые, например, с одной стороны протекает вода (2/5) $*10^3 \kappa \kappa a n/m^2 u a c$ °C, с другой — воздух, $a_2=10/50 \kappa \kappa a n/m^2 u a c$ °C. Именно такие условия теплоотдачи существуют в отопительных и нагревательных приборах. Для интенсификации теплопередачи в таких аппаратах с той стороны, где коэффициент теплоотдачи мал, при помощи ребер увеличивается поверхность нагрева. Иногда оребрение производится с обеих сторон, так делают в тех случаях, когда требуется уменьшить размеры теплообменника, а значения a_1 и a_2 малы.

Изготовляются ребристые поверхности по-разному. В одних случаях они являются сплошной отливкой из чугуна, в других ребра изготовляются отдельно и затем прикрепляются к соответствующей поверхности. В последнем случае имеется то преимущество, что ребра можно изготовлять из другого, более теплопроводного материала, чем сама стенка, и вся конструкция может быть выполнена более легкой. При этом необходимо только, чтобы при насадке ребер между стенкой и ребрами был осуществлен плотный контакт. В противном случае в месте перехода тепла от стенки к ребру получается большое термическое сопротивление. Плотный контакт

осуществляется путем насадки ребер в горячем состоянии и последующей пропайки мест соединения.

Плоскость ребра всегда должна быть направлена по движению рабочей жидкости, а при свободном движении—вертикально.

Пример 22. Определить количество переданного тепла через 1 M^2 стенки, холодная сторона которой оребрена и коэффициент оребрения, равен $\frac{F_2}{F_1}$ =13. Толщина стенки δ =10 MM, и коэффициент теплопроводности материала λ = 40 $KKAN/MVaC^{\circ}C$. Коэффициенты теплоотдачи соответственно равны: a_1 =200 и a_2 =10 $KKAN/M^2\Gamma$ $VaC^{\circ}C$ и 'температуры $t_{f,1}$ =75° C и $t_{f,2}$ =15° C.

Решение.

Сначала определим коэффициент теплопередачи по формуле (194):

$$k_1 = \frac{1}{\frac{1}{200} + \frac{0,01}{40} + \frac{1}{10*13}} = \frac{1}{0,005 + 0,00025 + 0,0077} = \frac{1}{0,013} = 77 \frac{\text{ккал}}{\text{м}^2 \text{час}} ^{\circ}\text{C}$$

Подставляя затем в формулу (193), имеем:

$$\mathbf{q_1} = \mathbf{k_1} (\mathbf{t_{f.1}} - \mathbf{t_{f.2}}) = \mathbf{77} * \mathbf{60} = \mathbf{4620}$$
 ккал/м²час

При отсутствии ребер имели бы:

$$k_1 = \frac{1}{\frac{1}{200} + \frac{0,01}{40} + \frac{1}{10}} = \frac{1}{0,005 + 0,00025 + 0,1} = \frac{1}{0,10525} = 9,5$$
 ккал/м²час °С

$$q_1 = 9,5 * 60 = 570$$
 ккал/м²час

Таким образом, оребрение поверхности позволило увеличить тепло - 1 передачу в 8,1-раза.

Задание 12: Определить количество переданного тепла через 1 M^2 стенки, холодная сторона которой оребрена и коэффициент оребрения, равен $\frac{F_2}{F_1}$. Толщина стенки δ =MM, и коэффициент теплопроводности материала λ = $KKAN/MVAC^{\circ}C$. Коэффициенты теплоотдачи соответственно равны: a_1 и a_2 = $KKAN/M^2\Gamma$ $VAC^{\circ}C$ и 'температуры $V_{f,1}$ = $VAC^{\circ}C$ и $V_{f,2}$ = $VAC^{\circ}C$.

Послед- няя цифра шифра	$\frac{F_2}{F_1}$	δ <i>мм</i> ,	t _{f,1} ° C,	t _{f,2} °C	Предпо следняя цифра шифра	а ₁ ккал/м ² час°С,	а ₂ ккал/м час °С	\MII a
0	10	8	70	10	0	190	8	35
1	11	9	71	11	1	192	10	36
2	12	10	72	12	2	194	12	37
3	13	11	73	13	3	196	14	38
4	14	12	74	14	4	198	16	39
5	15	13	75	15	5	200	18	40
6	16	14	76	16	6	202	20	41
7	17	15	77	17	7	204	22	42
8	18	16	78	18	8	206	24	43
9	19	17	79	19	9	208	26	44

Таблица данных для решения задания

XVII. Твердые, жидкие и газообразные топлива

XVII.I. Состав топлива

Твердые и жидкие топлива состоят из горючих (углерода-С, водорода-Н, летучей серы- $S_{\pi} = S_{op} + S_k$) и негорючих (азота-Nи кислорода-О) элементов и балласта (золы A, влаги-W)

Газообразные топлива состоят из горючих (CO, H_2 , CH_4 , C_TH_{**}) и негорючих (N_2 , O_2 , CO_2) газов и небольшого количества водяного пара (H_2O).

При изучении характеристик твердых и жидких топлив и их состава различают рабочую, горючую и сухую массу. Состав рабочей, горючей и сухой массы обозначается соответственно индексами «р», «г» и «с» и выражается следующими равенствами.

$$C^p + H^p + S_{\pi}^p + N^p + O^p + A^p + W^p = 100\%$$
 (195)

$$C^{r} + H^{r} + S_{\pi}^{r} + N^{r} + O^{r} = 100\%$$
 (196)

$$C^{c} + H^{c} + S_{\pi}^{c} + N^{c} + O^{c} + A^{c} = 100\%$$
 (197)

В формулах (195), (196), (197) содержание элементов дано в процентах на 1 кг топлива. Коэффициенты пересчета состава топлива из одной массы в другую приведены в таб 1.1.

Для сланцев состава ($C^p + H^p + S_n^p + N^p + O^p + A^p + W^p$) пересчет с рабочей массы на горячую осуществляется с помощью коэффициента

$$K=100/[100-A_{\mu}^{p}-W^{p}-(CO)_{\kappa}^{p}]$$
(198)

Где A_u^p — истинная золность рабочей массы; %; W^p -влажность рабочей массы,% — $(CO)_K^p$ -содержание углекислоты карбонатов, %.

Истинная зольность рабочей массы определяется по формуле

$$A_{H}^{p} = A^{p} - \left[2,5(S_{a}^{c} - S_{c}^{c}) + 0,375S_{k}^{c}\right] \left(\frac{100 - W^{p}}{100}\right)$$
(199)

таблица 15.1

Заданная масса	Коэффициенты пересчета на массу						
топлива	рабочую	горючую	сухую				
	1	100	100				
Рабочая	1	$\overline{100 - (A^p + W^p)}$	100 – W ^p)				
Горючая	$\frac{100 - (A^{p} + W^{p})}{100 - W^{p}}$	1	$\frac{100-A^{c}}{100}$				
Сухая	$\frac{100-\sqrt{1}}{100}$	$\frac{100}{100-A^c}$	1				

Величина [2.5 ($S_a^c - S_c^c$) + 0,375° для ленинградских и эстонских сланцев может быть принята равной 2,0, для кашпирских - 4,1.

Пересчет состава (%) рабочей массы топлива при изменении влажности производится по формулам

$$C_2^p = C_1^p \frac{100 - W_2^p}{100 - W_1^p} \tag{200}$$

$$H_2^p = H_1^p \frac{100 - W_2^p}{100 - W_1^p} \tag{201}$$

где, W_1^p -начальная влажность топлива %, W_2^p - конечная влажность топлива, %.

Средний состав (%) смеси двух твердых или жидких топлив, заданных массовыми долями,-первого C_1^p , %; H_1^p %, ...) и второго $(C_2^p$, %; H_2^p , %, ...)-определяется по уравнениям:

$$C_{CM}^{p} = b_{1}C_{1}^{p} + (1 - b_{1}) C_{2}^{p}$$
(202)

$$H_{CM}^{p} = b_1 H_1^{p} + (1 - b_1) H_2^{p}$$
(203)

где массовая доля b_1 одного из топлив в смеси находится по формуле

$$b_1 = B_1/(B_1 + B_2) \tag{204}$$

Здесь B_1 и B_2 – массы топлив, входящих в смесь, кг.

Пример 23. В топке котла сжигается смесь, состоящая из $3 \cdot 10^3$ кг донецкого угля марки Д состава: $C_1^p = 49,3$ %; $H_p = 3,6$ %; $S_{\pi}^p = 3,0$ %; $N_1^p = 1,0$ %; $O_1^p = 8,3$ %; $A_1^p = 21,8$ %; $W_1^p = 13,0$ % и $4,5\cdot 10^s$ кг донецкого угля марки Γ состава: $C_2^p = 55,2$ %; $H_2^p = 3,8$ %; $(S_{\pi}^p)_2 = 3,2$ %; $N_2^p = 1,0$ %; $O_2^p = 5,8$ %; $A_2^p = 23,0$ %; $W_2^p = 8,0$ %. Определить состав рабочей смеси.

Решение:

Массовую долю одного из топлив в смеси определяем по формуле(204): . :

$$b_1 = B_1/(B_1 + B_2) = 3000/(3000 + 4500) = 0.4.$$

Состав рабочей смеси находим, пользуясь уравнениями (1-7)

Проверим точность вычислений:

 $C_{\text{см}}^{\text{p}} + H_{\text{см}}^{\text{p}} + (S_{\text{см}}^{\text{p}})_{\text{см}} + N_{\text{см}}^{\text{p}} + O_{\text{см}}^{\text{p}} + A_{\text{см}}^{\text{p}} + W_{\text{см}}^{\text{p}} = 52,8+3,7+3,1+1,0+6,8+22,6+10,0=100\%$ **Задача 34**. В топке котла сжигается смесь, состоящая из 800 кг кузнецкого угля марки Д состава: $C_{1}^{\text{p}} = 58,7\%$; $H_{2}^{\text{p}} = 4,2\%$; $(S_{\pi}^{\text{p}})_{I} = 0,3\%$, $N_{1}^{\text{p}} = 1,9\%$; $O_{1}^{\text{p}} = 9,7\%$:

 $A_1^{\rm p}=13,2\%;~~W_1^{\rm p}=12,0\%~~$ и 1200 кг кузнецкого угля марки Γ состава: $C_2^{\rm p}=66,0\%;~H_2^{\rm p}=4,7~\%;~~C_2^{\rm p}=0,5\%;~N_2^{\rm p}=1,8\%;~O_2^{\rm p}=7,5\%;~A_2^{\rm p}=11,0\%;~W_2^{\rm p}=8,5\%.$ Определить состав рабочей смеси.

Om sem: $C_{\text{cm}}^{\text{p}} = 63.1\%$; $H_{\text{cm}}^{\text{p}} = 4.5\%$; $(S_{\pi}^{\text{p}})_{\text{cm}} = 0.4\%$; $N_{\text{cm}}^{\text{p}} = 1.8\%$; $O_{\text{cm}}^{\text{p}} = 8.4\%$; $A_{\text{cm}}^{\text{p}} = 11.9\%$; $W_{\text{cm}}^{\text{p}} = 9.9\%$

Задание 13:В топке котла сжигается смесь, состоящая из $3\cdot 10^3$ кг донецкого угля марки Д состава: $C_1^p = \%$; $H_p = \%$; $S_n^p = \%$; $N_1^p = \%$; $O_1^p = \%$; $A_1^p = \%$; $W_1^p = \%$ и $4.5\cdot 10^s$ кг донецкого угля марки Γ состава: $C_2^p = \%$; $H_2^p = \%$;

$$(S^{\rm p}_{_{J}})_2=\%$$
;
$$N^{\rm p}_2=\%;\, O^{\rm p}_2=\%;\, A^{\rm p}_2=\%;\, W^{\rm p}_2=\%. \, {\rm Определить} \ {\rm состав} \ {\rm рабочей} \ {\rm смеси}.$$
 таблица 15.2

Таблица данных для решения задания

Вели	Последняя цифра шифра											
чина	0	1	2	3	4	5	6	7	8	9		
C_1^p	58,2	56,6	55	52,7	50,1	49,5	47,9	46,2	44,5	41,8		
H_p	3	3,2	3,4	3.6	3,8	4	4,2	4,4	4,6	4,8		
S_n^p	1	1,1	1,2	2	2,1	2,2	2,3	2,4	2,5	3		
N_1^p	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4		
O_1^p	7,3	7,4	7,5	7,6	7,7	7,8	7,9	8	8,1	8,2		
A_1^p	20	20,1	20,2	20,3	20,4	20,5	20,6	20,8	21	21,8		
W_1^p	10	11	12	13	14	15	16	17	18	19		

таблица 15.3

Вели	Предпоследняя цифра шифра											
чина	0	1	2	3	4	5	6	7	8	9		
C_2^p	63,5	61,1	58,7	56,3	53,9	51,5	49,1	46,7	44,3	41,9		
H_2^p	3	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9		
$(\boldsymbol{S}_{n}^{\boldsymbol{p}})_{2}$	3	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9		
N_2^p	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4		
O_2^p	5	5,1	5,2	5,3	5,4	5,5	5,6	5,7	5,8	5,9		
A_2^p	20	21	22	23	24	25	26	27	28	29		
W_2^p	5	6	7	8	9	10	11	12	13	14		

XVI1.2. Характеристики топлива

Теплота сгорания топлива. Теплотой сгорания топлива I называют количество теплоты в кДж, выделяемой при полном сгорании 1 кг твердого (жидкого) или $1 \, \text{м}^3$ газообразного топлива.

Для твердого и жидкого топлива различают теплоту сгорания высшую Q_{B} (кДж/кг) и низшую Q_{H} (кДж/кг).

Величины высшей и низшей теплоты сгорания рабочей, горючей и сухой массы твердого (жидкого) топлива связаны выражениями:

$$Q_{\rm B}^{\rm p} = Q_{\rm H}^{\rm p} + 225 {\rm H}^{\rm p} + 25 {\rm W}^{\rm p}$$

$$Q_{\rm B}^{\rm r} = Q_{\rm H}^{\rm r} + 225 {\rm H}^{\rm r}$$

$$Q_{\rm B}^{\rm c} = Q_{\rm H}^{\rm c} + 225 {\rm H}^{\rm c}$$
(205)

Тепловые расчеты котлов выполняют, пользуясь низшей теплотой сгорания рабочей массы топлива:

Низшая теплота сгорания (кДж/кг) рабочей массы твердого и жидкого топлива

$$Q_{\rm H}^{\rm p} = 338{\rm C}^{\rm P} + 1026{\rm H}^{\rm P} - 108,5 \,({\rm O}^{\rm P} - S_{\pi}^{\rm p}) - 25\,{\rm W}^{\rm P},$$
 (206)

Где C^p , H^p , O^p , S_n^p , W^p — содержание элементов в рабочей массе топлива, %:

низшая теплота сгорания (кДж/м³) газообразного топлива

$$Q_{\rm H}^{\rm c} = 108H_2 + 126CO + 234H_2S + 358CH_4 + 591C_2H_4 + 638C_2H_6 + 860C_3H_6 + 913C_3H_8 + 1135C_3H_8 + 1187C_4H_{10} + 1461C_5H_{12} + 1403C_6H_6,$$
 (207)

 H_2 , CO, H_2S , CH_4 , C_2H_4 и т. д. - объемное содержание газов, входящих в состав газообразного топлива, %

При пересчете низшей теплоты сгорания пользуются следующими формулами: ;

С горючей массы на рабочую иобратно

$$Q_{\rm H}^{\rm p} = Q_{\rm H}^{\rm r} \frac{100 - (A^{\rm p} + W^{\rm p})}{100} - 25 \text{Wp}$$
 (208)

$$Q_{\rm H}^{\Gamma} = \frac{Q_{\rm H}^{p} + 25W^{p}}{100 - (A^{p} + W^{p})} \, 100; \tag{209}$$

сухой массы на рабочую и обратно

$$Q_{\rm H}^{\rm p} = Q_{\rm H}^{\,c} \frac{100 - W^{\rm p}}{100} - 25 \text{Wp} \tag{210}$$

$$Q_{\rm H}^{c} = \frac{Q_{\rm H}^{p} + 25W^{p}}{100 - W^{p}} \, 100 \tag{211}$$

для горючих сланцев — с горючей массы на рабочую и обратно

$$Q_{\rm H}^{\rm p} = Q_{\rm H}^{\rm p} \frac{100 - A_{\rm H}^{\rm p} - W^{\rm p} - (CO_2)}{100}$$
 (212)

$$Q_{\rm H}^{\Gamma} = \frac{Q_{\rm H}^p + 25W^p + 40 (CO_2)_k^p}{100 - A_{\rm H}^p - W^p - (CO_2)_k^p} \tag{213}$$

при изменении влажности

$$Q_{\rm H2}^p = \frac{(Q_{\rm H1}^p + 25W_1^p)(100 - W_2^p)}{(100 - W_1^p)} \, 100 \tag{214}$$

Для смеси двух твердых, жидких или газообразных топлив низшая теплота сгорания определяется по формуле

$$Q_{HCM}^{p} = b_1 Q_{H1}^{p} + (1 - b_1) Q_{H2}^{p}$$
(215)

где b_I массовая доля одного из топлив в смеси; низшая теплота сгорания одного вида топлива в смеси кДж/кг (кДж/м³).; $Q_{\rm H2}^{\rm p}$ - низшая теплота сгорания второго вида топлива, кДж/кг (кДж/м³).

Для сравнения тепловой ценности различных видов топлива пользуются понятием условного топлива. Условным топливом называют такое топливо, теплота сгорания которого равна 29 300 кДж/кг.

Пересчет расхода натурального топлива на условное осуществляется по формуле

$$B_v = B3$$

где, B_y и B- соответственно расход условного и натурального топлива, кг, кг/с; Э- тепловой эквивалент топлива, определяемый по формуле

$$\ni = Q_{H}^{p}/29300$$
 (216)

Зольность, влажность и сернистость топлива. При рассмотрении условий работы котлов на различных видах топли**ва** пользуются приведенными величинами зольности A_{np} , влажности W_{np} и сернистости S_{np} топлива:

приведенная зольность топлива, кг $\%*10^{-3}$ /кДж,

$$A_{np} = 4190 \text{ A}^{p}/\mathbf{C}_{H}^{p} \tag{217}$$

приведенная влажность топлива, кг \cdot % \cdot 10⁻³/кДж,

$$W_{\rm np} = 4190 \,\,\mathrm{W}^{\rm p}/Q_{\rm H}^{\rm p} \tag{218}$$

приведенная зернистость топлива, кг $\%*10^{-3}$ /кДж

$$S_{np} = 4190 S_{\pi}^{p} / Q_{H}^{p} \tag{219}$$

Пример 24. Определить низшую и высшую теплоту сгорания рабочей массы кузнецкого угля марки Д, если состав его горючей массы $C^r = 78,5\%$; $H^r = 5,6\%$; $S_{\pi}^r = 0,4\%$; $N^r = 2,5\%$; $O^r = 13,0\%$. Зольность сухой массы A^c -15,0% и влажность рабочая $W^p = 12,0\%$.

Решение:

Пользуясь коэффициентами пересчета из табл. 1.1, определяем зольность рабочей массы топлива

$$A^{p} = A^{c} \frac{100 - W^{p}}{100} = \frac{100 - 12,0}{100} = 13,2\%$$

и состав рабочей массы:

$$C^{p} = C^{\frac{100 - (A^{p} + W^{p})}{100}} - 78,5 \frac{100 - (13,2 + 12,0)}{100} = 58,7\%;$$

$$H^{p} = H^{\frac{100 - (A^{p} + W^{p})}{100}} = 5,6 \frac{100 - (13,2 + 12,0)}{100} = 4,2\%;$$

$$S_{\pi}^{p} = S_{\pi}^{r} \frac{100 - (A^{p} + W^{p})}{100} = 0,4 \frac{100 - (13,2 + 12,0)}{100} = 0,3\%;$$

$$N^{p} = N^{\frac{100 - (A^{p} + W^{p})}{100}} = 2,5 \frac{100 - (13,2 + 12,0)}{100} = 1,9\%;$$

$$O^{p} = O^{\frac{100 - (A^{p} + W^{p})}{100}} = 13,0 \frac{100 - (13,2 + 12,0)}{100} = 9,7\%.$$

Низшую теплоту сгорания рабочей массы топлива определяем по формуле

$$Q_H^p$$
=338C p +1025H p -108,5 (O p - S_π^p) -25W p =338·58,7+1025·4,2 108,5 (9,7-0,3) — 25·12 = 22 825 кДж/кг.

Высшую теплоту сгорания - по формуле:

$$\boldsymbol{Q}_{\mathrm{B}}^{\boldsymbol{p}} = \boldsymbol{Q}_{\boldsymbol{H}}^{\boldsymbol{p}} + 225\mathrm{H}^{\mathrm{P}} + 25\mathrm{W}^{\mathrm{P}} = 22825 + 225\cdot4,2 + 25\cdot12,0 = 24070$$
 кДж/кг.

Задача 35. Определить низшую теплоту сгорания рабочей и сухой массы донецкого угля марки Γ , если известны его низшая теплота сгорания горючей массы $Q_{\scriptscriptstyle H}^{\scriptscriptstyle c}=33170\,$ кДж/кг, зольность сухой массы $A^{\scriptscriptstyle c}=25,0\,$ % и влажность рабочая $W^{\scriptscriptstyle p}=8,0\,$ %

$$Omsem: Q_{_H}^{\,p} = 22\,\,024\,\,\mathrm{кДж/кг}; Q_{_H}^{\,c} = 24\,\,157\,\,\mathrm{кДж/кг}$$

Задача 36. Определить низшую теплоту сгорания горючей и сухой массы кузнецкого угля марки T, если известны его низшая теплота сгорания рабочей массы $Q_{\rm H}^p = 26180~{\rm кДж/кг}$, зольность сухой массы $A^c = 18,0\%$ и влажность рабочая $W^p = 6,5\%$.

 $Omeem: Q_{H}^{\Gamma} = 34 \ 345 \ кДж/к\Gamma; = 28 \ 174 кДж/кГ.$

Задача 37. Определить высшую теплоту сгорания горючей и сухой массы кизеловского угля марки Γ , если известны следующие величины: $Q_{\rm H}^p = 19~680$ кДж/кг; $H^p = 3.6\%$, $A^p = 31.0\%$, $W^p = 6.0\%$.

Ответ:
$$Q_{\rm B}^{\rm c}$$
= 21 961 кДж/кг; $Q_{\rm B}^{\rm r}$ = 32 635 кДж/кг.

Задача 38. Определить низшую и высшую теплоту сгорания рабочей массы ленинградских сланцев, если известны следующие величины: $Q_{\rm H}^{\rm r}=36848$ кДж/кг; ${\rm H}^{\rm p}=2,7\%$; ${\rm A}^{\rm p}=46,0\%$, $W^{\rm p}=11,5\%$ и $({\rm C0_2})^{\rm p}_{\rm k}=16,4\%$

 $Omsem: \ Q_{\scriptscriptstyle
m H}^{\ p} = 9337 \ {
m кДж/кг} {:} \ Q_{\scriptscriptstyle
m B}^{\ p} = 10232 \ {
m кДж/кг}$

Пример 25.Определить низшую и высшую теплоту сгорания горючей массы высокосернистого мазута, если известны следующие величины: $Q_{\rm H}^p = 38772$ кДж/кг; $H^p = 10,4\%$; $A^p = 0,1\%$; $W^p = 3,0\%$.

Решение:

Содержание водорода в горючей массе определяем, пользуясь коэффициентом пересчета из табл. 15.

$$H^{\Gamma} = H^{p} \frac{100}{100 - (A^{p} + W^{p})} = 10,4 \frac{100}{100 - (0,1 + 3,0)} = 10,7\%$$

Низшую теплоту сгорания горючей массы топлива находим по формуле (209):

$$Q_{\rm H}^{\Gamma} = \frac{Q_{\rm H}^h + 25W^p}{100 - (A^p + W^p)} 100 = \frac{38772 + 25 \cdot 3,0}{100 - 0,1 + 3,0} 100 = 40090$$
кДж/кг.

Высшую теплоту сгорания — по формуле (205):

$$Q_{\scriptscriptstyle \mathrm{B}}^{\scriptscriptstyle \Gamma} = Q_{\scriptscriptstyle \mathrm{H}}^{\scriptscriptstyle \Gamma} + 225 \mathrm{H}^{\scriptscriptstyle \Gamma} = 40~090 + 225 \cdot 10,7 = 42~497$$
 кДж/кг.

Задача 39. Определить низшую теплоту сгорания сухого природного газа Саратовского месторождения состава $C0_2=0.8\%$; $C1_4=84.5\%$; $C2_4H_8=3.8\%$; $C3_4H_8=1.9\%$; $C4_4H_{10}=0.9\%$; $C5_5H_{12}=0.3\%$; $C5_7=7.8\%$.

 $Omsem: Q_{\rm H}^{\,\rm c} = 35 799 \ {\rm кДж/м}^{\rm a}.$

Задача 40. Определить низшую теплоту сгорания рабочей массы челябинского угля марки БЗ состава: $C^p = 37,3\%$; $H^p = 2,8\%$; $S_n^p = 1,0\%$; $N^p = 0,9\%$; $O^p = 10,5\%$; $A^p = 29,5\%$; $W^p = 18$ %, при увеличении его влажности до $W^p = 20$ %.

 $Omsem: Q_{H}^{p} = 13\,542 \text{ кДж/кг.}$

XVII.3. Масса продуктов сгорания

Объем воздуха, объем и масса продуктов сгорания определяются на $1~{\rm Kr}$ твердого, жидкого или на $1~{\rm M}^3$ сухого газообразного топлива при нормальных условиях.

Объем воздуха, необходимый для сгорания топлива. Теоретический (при коэффициенте избытка воздуха в топке $\alpha_{\scriptscriptstyle T}=1$) объем сухого воздуха

 $(m^3/кг)$, необходимый для полного сгорания 1 кг твердого или жидкого топлива, определяется по формуле

$$V^{0} = 0.089C^{P} + 0.226H^{P} + 0.033 (S_{\pi}^{p} - O^{P})$$
(220)

Теоретический объем воздуха (m^3/m^3) , необходимый для полного сторания

1 м³ сухого газообразного топлива, определяется по формуле:

$$V^{o} = 0.0478 [0.5 (CO + H_{2}) + 1.5H_{2}S + 2CH_{4} + 2CH_{4} + \sum_{n} x(m + n/4) C_{n}H_{n} - O_{2}]$$
(221)

В формуле (220) содержание элементов топлива выражается в процентах на 1 кг массы топлива, а в (221) содержание горючих газов СО, H_2 , H_2S , CH_4 и т. д. в процент по объему.

Для сгорания смеси двух твердых, жидких или газообразных топлив теоретический объем сухого воздуха определяется по формуле

$$V_{cm}^{0} = b_1 V_1^{0} + (1 - b_1) V_2^{0}, (222)$$

где, b_1 — массовая доля одного из топлива в смеси.

Действительный объем воздуха $(m^3/\kappa \Gamma, m^3/m^3)$, поступивший в топку, определяется по формуле

$$V_{\mu} = \alpha_{\tau} V^{0} \tag{223}$$

где, $\alpha_{\scriptscriptstyle T}$ — коэффициент избытка воздуха в топке.

Состав и объем продуктов сгорания топлива. При полном сгорании топлива продукты сгорания содержат газы: CO_2 , SO_2 , N_2 , O_2 ипары воды H_2O , т.е.

$$C0_2 + S0_2 + N_2 + 0_2 + H_20 = 100 \%$$
 (224)

Полный объем продуктов сгорания V_{Γ} (м³/кг) представляет собой сумму объемов сухих газов $V_{C\Gamma}$ и водяных паров

$$V_{\Gamma} = V_{C \cdot \Gamma} + V V_{H_2 \cdot O_1} \tag{225}$$

Приэтом

$$V_{c \cdot r} = V_{RO2} + V_{N2} + V_{O2} \tag{226}$$

где, $V_{RO2} = V_C o_2 + V_S o_a$ - объем трехатомных газов, м³/кг;

 $V_{N2} + V_{O2}$ - объем двухатомных газов, м³/кг.

Для твердых (кроме сланцев) и жидких топлив теоретические объемы (м 3 /кг) продуктов полного сгорания при $\alpha_{\scriptscriptstyle T}$ определяются по, формулам:

Объем двухатомных газов

$$V_{N_2}^0 = 0.79 V^0 + 0.8 N^P / 100;$$
 (227)

объем трехатомных газов

$$V_{RO2} = 0.0187 \text{ (CP} + 0.375S^{P});$$
 (228)

Объем сухих газов

$$V_{c.r}^{o} - V_{RO2} + V_{Nl}^{o} = 0.0187 (C^{p} + 0.375S_{\pi}^{p}) + 0.79V^{o} + 0.8N^{P}/100;$$
 (229)

Объем водяных паров

$$V_{H2O}^{o} = 0.0124 (9H^{P} + W^{9}) + 0.0161V^{o};$$
 (230)

полный объем продуктов сгоран

$$V_{r}^{o} = V_{c.r}^{o} + V_{H2O}^{o} = 0/0187 (C^{p} + 0.375S_{\pi}^{p}) + 0.79V^{o} + 0.8N^{p}/100 + 0.0124(9H^{p} + W^{p}) + 0.0161V^{o}$$
 (231)

Для сланцев объем трехатомных газов определяется по формуле

$$V_R O_{2\kappa} = F_{R02} + [0,509 (CO_2)^p_k/100] K = 0,0187(C^P + 0,375S^p_{\pi}) + [0,509 (CO_2)^p_{\kappa}/100]K;,$$
 (232)

где, К- коэффициент разложения карбонатов:

при слоевом сжигании K = 0.7, при камерном — 1,0.

Для газообразного топлива теоретические объемы продуктов сгорания (m^3/m^3) при ат = 1 определяются по формулам:

объем двухатомных газов

$$V_{N2}^{o} = 0.79 \text{V}^{\circ} \text{N}_{2} / 100;$$
 (233)

объем трехатомных газов

$$F_{RO2}$$
, = 0,01 ICO₂+ CO + H₂S + \sum mC_mH_n]; (234)

объем сухих газов

$$V_{\rm c,r}^0 = V_{RO2} + V_N^0; (235)$$

объем водяных паров

$$V_{H20}^{o} = 0.01 [H_2S + H_2 + \sum (n/2) C_m H_n + 0.124 d_r] + 0.01611 V^{\circ},$$
 (236)

где, d_r - влагосодержание газообразного топлива, отнесенное к 1 м³ сухого газа, г/м³;

полный объем продуктов сгорания

$$V_r^o = V_{\text{c.r.}}^O + V_{H2O}^O (237)$$

Для твердых (кроме сланцев), жидких и газообразны .топлив объемы продуктов полного сгорания (м 8 /кг) при $\alpha_T > 1$ определяются по формулам: объем сухих газов

$$V_{c.r.} = V_{c.r.}^{0} + (\alpha_{T} - 1) V^{o} = V_{RO2} + V_{N2}^{0} + (\alpha_{T} - 1) V^{o};$$
 (238)

объем водяных паров

$$V_{H2O} = V_{H2O}^{O} + 0.0161 (\alpha_{T} - 1)V^{o}; (239)$$

полный объем продуктов сгорания определяется по (237).

Для сланцев полный объем продуктов сгорания (${\rm M}^3/{\rm K}\Gamma$) ${\rm a_T} \alpha_{\rm T} > 1$:

$$V_{r\cdot k} = V_{R02K} + V_{N}^{o} + V_{H20}^{o} = V_{RO2k} + V_{N2}^{o} + 0,0124 (9H^{P} + W^{P}) + 0,0161 \alpha_{T} V^{o}$$
(240)

Содержание (%) $C0_2$, $S0_2$ и $R0_2$ в сухих газах при полном сгорании топлива определяется по формулам:

$$CO_2 = (V_{CO2}/V_{cr})100$$
 (241)

$$SO_2 = (V_{SO2}/V_{c,r})100$$
 (242)

$$RO_2 = (V_{RO2}/V_{c.r})100$$
 (243)

Максимальное содержание (%) трехатомных газов RO_2 в сухих газах при полном сгорании топлива

$$RO_2^{\text{max}} = 21/(1+\beta),$$
 (244)

β — характеристика топлива;

для твердого и жидкого

$$\beta = 2.35 (HP - 0.1260^{P} + 0.04N^{P})/(C^{P} + 0.375 \mathbf{S}_{\pi}^{\mathbf{p}});$$
(245)

для газообразного

$$\beta = 0.21 \, \frac{0.01 N_2 + 0.79 V^0}{V_{RO2}} \tag{246}$$

Содержание (%) азота N_2 и кислорода O_2 в сухих газах при полном сгорании топлива

$$N_2 = 100 - R0_2 - O_2;$$
, (247)
 $O_2 = 21 - \beta RO_2 - RO_2,$

Масса продуктов сгорания:

Для твердого (кроме сланцев) и жидкого топлива (кг/кг)

$$M_r = 1 - 0.01A^P + 1.306\alpha_T V^o;$$
 (248)

Для газообразного топлива ($\kappa \Gamma/M^3$)

$$M_{r} = p_{r,r}^{c} + 0.001d_{r,r} + 1.306\alpha_{r}V^{o},$$
 (249)

Где $p_{\rm r.t.}^c$ - плотность сухого газа, кг/м³; ${\rm d}_{\rm r.t.f.}$ — содержание влаги в топливе, кг/м³ для сланцев (кг/кг)

$$M_{\Gamma \cdot K} = 1 - 0.01 A_K^p + 1.306 \alpha_T V^\circ + 0.01 (C O_2)^p_k K.$$
 (250)

где A_{κ}^{p} -расчетное содержание золы в топливе с учетом неразложившихся карбонатов, %; K- коэффициент разложения карбонатов: при слоевом сжигании K - 0,7, при камерном - 1,0.

Расчетное содержание (%) золы в топливе с учетом не разложившихся

карбонатов

$$A_{\kappa}^{p} = A^{p} + (1 - K) (CO_{2})_{\kappa}^{p}$$
 (251)

Для твердых топлив концентрация золы в продуктах сгорания определяется по формуле

$$\mu_{3\pi} = A^{p} \alpha_{vH} / (100M_{r}) \tag{252}$$

где, α_{vH} - долязолы топлива, уносимой продуктами его сгорания.

Коэффициент избытка воздуха в топке. При полном сгорании топлива коэффициент избытка воздуха в топке определяется по формуле

$$\alpha_{\rm T} = 21 / (21 - 79 \frac{0_2}{N_2}) \tag{253}$$

где, O_2 и N_2 -содержание кислорода и азота в газах, %

Пример 26.. Определить объем продуктов полного его сгорания на выходе из топки, а также теоретический и действительный объемы воздуха, необходимые для сгорания 1 м²природногогаза Ставропольского месторождения состава;

 $CO_2=0,2\%;\ CH_4=98,2\%;\ C_2H_6=0,4\%;\ C_3H_8=0,1\%\ C_4H_{10}=0,1\%;\ N_2=1,0\%.$ Коэффициент избытка воздуха в топке $\alpha_{\scriptscriptstyle T}=1,2.$

Решение:

Теоретический объем воздуха, необходимый для полного сгорания 1 м³топлива, определяем по формуле

$$V^{o}=0.0478 \ [0.5\text{CJ} + 0.5\text{H}_{2} + 1.5\text{H}_{2}\text{S} + 2\text{CH}_{4} + \sum_{n} x \ (m+n/4) \ C_{m}H_{n} - O_{2}] = 0.0478$$

$$(2 \cdot 98.2 + 3.5 \cdot 0.4 + 5 \cdot 0.1 + 6.5 \cdot 0.1) = 9.51 \ \text{m}^{3}/\text{m}^{3}.$$

Действительный объем воздуха – по формуле (223):

$$V_{\pi} = \alpha_T V^o = 1.2 \cdot 9.51 = 11.41 \text{ m}^3/\text{m}^3.$$

Объем сухих газов при $\alpha_{\rm T} = 1,2$ определяем по формуле (238)

$$\begin{split} V_{c,r} &= V_{RO2} + \textit{V}_{N2}^o + (\alpha_r - 1) \ V^o = 0.01 \ (CO_2 + CO + H_2S + CY_4 + 2C_2H_6 + 3C_3H_8 \ + \\ 4C_4H_{10}) + 0.79V^o + N_2/100 + (\alpha_T - 1) \ V^o = 0.01 \ (0.2 + 98.2 + 2 \cdot 0.4 + 3 \cdot 0.1 + 4 \cdot 0.1) + 0.79 \cdot 9.51 + 1.0/100 + (1.2 - 1) \ 9.51 = 10.42 \ \text{m}^3/\text{m}^3 \end{split}$$

Объем водяных паров при $\alpha_{\scriptscriptstyle T} = 1,2$ находим по формуле

$$\begin{split} V_{\rm H2O} &= 0.01 \ (H_2S \ + \ H_2 \ + \ 2CH_4 \ + \ 3C_2H_6 \ + \ 4C_3H_8 \ + \ 5C_4H_{10} \ + \ 0.124d_r) \ + \\ 0.0161\alpha_{\rm \scriptscriptstyle T}V^\circ &= 0.01 \ (2\cdot98.2 \ + \ 3 \ X \ + \ 0.4 + \ 4 \cdot \ 0.1 \ + \ 5 \cdot \ 0.1) \ + \ 0.0161\cdot1.2\cdot9.51 \ = \\ 2.17 \ {\rm M}^3/{\rm M}^3 \end{split}$$

Объем продуктов полного сгорания — по формуле (1.31):

$$V_{r} - V_{c r} + V_{H2O} = 10.42 + 2.17 = 12.59 \text{ m}^{3}/\text{m}^{3}.$$

Задача 41. Определить теоретический и действительный объем воздуха, необходимые для слоевого сжигания 1000 кг донецкого угля марки Г состава:

 $C^p=55,2\%$ $H^p=3,8\%$; $S_\pi^p=3,2\%$; $N^p=1,0\%$; $O^p=5,8\%$; $A^p=23,0\%$; $W^p=8,0\%$. Коэффициент избытка воздуха в топке $\alpha_{\scriptscriptstyle \rm T}=1,3$.

Omsem: $V^0 = 5830 \text{ m}^8$; $V_{\pi} = 7579 \text{ m}^3$.

Задача 42. Определить объем воздуха, необходимый для сжигания 800 кг/ч ленгерского угля марки Б3 состав $C^p = 45,0\%$; $H^p = 2,6\%$; $S_{\pi}^p = 1,7\%$; $N^p = 0,4\%$; $O^p = 9,9\%$; $A^p = 11,4\%$; $W^p = 29,0\%$, и 500 кг/ч экибастузского угля марки СС состава: $C^p = 43,4\%$; $H^p = 2,9\%$ $S_{\pi}^p = 0,8\%$; $N^p = 0,8\%$; $O^p = 7,0\%$; $A^p = 38,1\%$; $W^p = 7,0\%$, при коэффициентах избытка воздуха в топочной камере соответственно $\alpha_{\tau} = 1,4$ и 1,3.

Ответ: V_{π} — 7823 м³/ч.

Пример 27. Определить объем двух- и трехатомных газов и содержание $C0_2$ и $S0_2$ в сухих газах, получаемых при полном сгорании 1 кг донецкого угля марки T состава. $C^p = 62,7\%$; $H^p = 3,1\%$; $S_{\pi}^p = 2,8\%$; $N^p = 0,9\%$; $O^p = 1,7\%$; $A^p = 23,8\%$; $W^p = 5,0\%$, если известно, что дымовые газы при полном сгорании содержат $RO_2^{\text{Max}} = 18,8\%$.

Решение:

Объем трехатомных газов определяем по формуле (228):

$$V_{RO2}=V_{CO2}+V_{SO2}=0.0187 (C^p + 0.375S_{\pi}^p)=060187 X (62.7+0.375\cdot2.8)=1.19 \text{ m}^3/\text{kg}.$$

Объем сухих газов находим из формулы (243):

$$V_{c.r} = \frac{V_{RO2}}{RO_2^{max}} 100 = \frac{1,19}{18,8} 100 = 6,33 \text{ m}^2/\text{kg}.$$

Объем двухатомных газов

$$V_{R2} = V_{c.r} - V_{RO2} = 6.33 - 1.19 = 5.14 \text{ m}^3/\text{K}\Gamma$$

Содержание СО₂ в сухих газах определяем по формуле (241)

$$CO_2 = \frac{V_{co2}}{V_{c.r}} \ 100 = \frac{0.0187 \, C^p}{V_{c.r}} \ 100 = \frac{0.0187 \cdot 62.7}{6.33} \ 100 = 18.5\%$$

Содержание SO₂ в сухих газах находим по формуле (242)

$$CO_2 = \frac{V_{CO2}}{V_{C.\Gamma}} \ 100 = \frac{0.0187 \cdot 0.375 S_{\pi}^{P}}{V_{C.\Gamma}} \ 100 = \frac{0.0187 \cdot 0.375 \cdot 2.8}{6.33} \ 100 = 0.31\%.$$

Задание 14. Определить теоретический и действительный объем воздуха, необходимые для слоевого сжигания 1000 кг донецкого угля марки Г

состава: $C^p = \%$ $H^p = \%$; $S^p_{_{\! I}} = \%$; $N^p = \%$; $O^p = \%$; $A^p = \%$; $W^p = \%$. Коэффициент избытка воздуха в топке $\alpha_{_{\! I}} = .$

Ответ: $V^0 = M^8$; $V_{A} = M^3$.

Таблица данных для решения задания

таблица 17

Последн	C_{b}	H^p	S_n^p	N^p	Предпосле	O_b	A^p	W^p	$a_{\scriptscriptstyle \mathrm{T}}$
яя цифра	%	%	%	%	дняя цифра	%	%	%	
шифра					шифра				
0	60,2	6	3	0,8	0	5	20	5	0,9
1	51,2	8,1	7,3	0,9	1	5,5	21	6	1
2	52,2	3,8	7,7	1	2	5,2	22	7	1,1
3	53,2	3,3	5,5	1,7	3	5,3	23	8	1,2
4	53,1	3,4	2,6	1,2	4	5,4	24	9	1,3
5	51,2	3,5	2,1	1,3	5	5,5	25	10	1,4
6	50,1	3,6	2,8	1,4	6	5,6	24	11	1,5
7	50,2	3,1	2,9	1,5	7	5,7	23	12	1,6
8	53,2	3,7	1	1,6	8	2,8	23	13	1,7
9	51,2	3,3	3,1	1,7	9	4,9	24	10	1,8

приложения

ТАБЛИЦА І

МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ(СИ)

		Сокращенные
Наименование величины	Единица измерения	обозначения единиц
	, , ,	измерения
	Основные единицы	
	метр	\mathcal{M}
Macca	килограмм	KZ
Время	секунда	Сек
Сила электрического тока	ампер	A
=	градус Кельвина	K
Сила света	Свеча	Св
	олнительные единицы	
	Радиан	рад
	Стерадиан	стер
_	роизводные единицы	- · · · · · · · · · · · · · · · · · · ·
Площадь	Квадратный метр	\mathcal{M}^2
Объем	Кубический метр	<i>M</i> ³
	Килограмм на кубический	_
Плотность (объемная масса)	метр	кг/м ³
Скорость	Метр в секунду	м/сек
угловая скорость	Радиан в секунду	рад/сек
Ускорение	Метр на секунду в	м/сек ³
Ускорение	квадрате	M/CEK
Сила	Ньютон	Н
Давление (механическое	Ньютон на квадратный	H/M^2
напряжение)	метр	11/,7/
Работа, энергия, количество,	Джоуль	Дж
теплоты	ДКОУЛЬ	ДЖ
Мощность	Ватт	Вт
удельная работа	Джоуль на килограмм	Дж/кг
Энергия		
Теплота		
Энтальпия системы	Джоуль	Дж
Удельная энтальпия	Джоуль на килограмм	Дж/кг
Энтропия системы	Джоуль на градус	Дж/град
Удельная энтропия	Джоуль на килограмм –	Дж/(кг·град)
у дельпая эптрония	градус	μσιτικέ ερμο)
Теплоемкость системы	Джоуль на градус	Дж/град
Удельная теплоемкость	Джоуль на килограмм -	Дж/(кг·град)
3 дельпая теплосикость	градус	джикс сриој

ТАБЛИЦА II **ПРИСТАВКИ ДЛЯ ОБРАЗОВАНИЯ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ**

Наименование приставок	Обозначение	Отношение к основной единицы	Наименование приставок	Обозначение	Отношение к основной единицы
Дека	да	10 ¹	Деци	Д	10 ⁻¹
Гекто	Γ	10^{2}	Санти	С	10 ⁻²
Кило	К	10^{3}	Милли	M	10 ⁻³
Мега	M	10 ⁶	Микро	МК	10-6
Гига	Γ	10 ⁹	Нано	Н	10 ⁻⁹
Tepa	Т	10^{12}	Пико	П	10 ⁻¹²

ТАБЛИЦА III МОЛЕКУЛЯРНЫЕ МАССЫ, ПЛОТНОСТИ И ОБЪЕМЫ КИЛОМОЛЕЙ ПРИ НОРМАЛЬНЫХ УСЛОВИЯХ И ГАЗОВЫЕ ПОСТОЯННЫЕ ВАЖНЕЙШИХ ГАЗОВ

Вещество	Химическое обозначение	Молекулярн ая масса	Плотность	Объем	Газовая постоянная
Воздух		28,96	1,293	22,4	287
Кислород	O_2	32	1,429	22,39	259,8
Азот	N_2	28,026	1,251	22,4	296,8
Атмосферный азот ¹	N_2	28,16	-1,257	-22,4	-295,3
Гелий	Не	4,003	0,179	22,42	2078
Аргон	Ar	39,994	1,783	22,39	208,2
Водород	H_2	2,016	0,09	22,43	4124
Окись углерода	CO	28,01	1,25	22,4	296,8
Двуокись углерода	CO_2	44,01	1,977	22,26	188,9
Сернистый газ	SO_2	64,06	2,926	21,89	129,8
Метан	CH ₄	16,032	0,717	22,39	518,8
Этилен	C_2H_4	28,052	1,251	22,41	296,6
Коксовый газ		11,5	0,515	22,33	721
Аммиак	NH ₃	17,032	0,771	33,08	488,3
Водяной пар ²	H_2O	18,016	-0,804	-22,4	-461

Атмосферный азот - условный газ, состоящий из азота воздуха вместе с двуокисью углерода и редкими газами, содержащимися в воздухе

приведение водяного пара к нормальному состоянию является условным.

ТАБЛИЦА IV

	М		плоемкост	I D	Массовая теплоемкость в		Объемная	
Температура	101		плосмкост оль.град)	ьв			теплоемкость в	
		кдж/(км	оль.град)		қДж/(н	кг.град)	кДж/(M^3 .град)	
t в °С	μc _p	μςυ	μc_{pm}	μc_{vm}	c_{pm}	c_{vm}	c_{pm}	C_{g_m}
0	29,274	20,959	29,274	20,959	0,9148	0,6548	1,3059	0,9349
100	29,877	21,562	29,538	21,223	0,9232	0,6632	1,3176	0,9466
200	30,815	22,500	29,931	21,616	0,9353	0,6753	1,3352	0,9642
300	31,832	23,517	30,400	22,085	0,9500	0,6900	1,3561	0,9852
400	32,758	24,443	30,878	22,563	0,9651	0,7051	1,3775	1,0065
500	33,549	25,234	31,334	23,019	0,9793	0,7193	1,3980	1,0270
600	34,202	25,887	31,761	23,446	0,9927	0,7327	1,4168	1,0459
700	34,746	26,431	32,150	23,835	1,0048	0,7448	1,4344	1,0634
800	35,203	26,888	32,502	24,187	1,0157	0,7557	1,4499	1,0789
900	35,584	27,269	32,825	24,510	1,0258	0,7658	1,4645	1,0936
1000	35,914	27,599	33,118	24,803	1,0350	0,7750	1,4775	1,1066
1100	36,216	27,901	33,386	25,071	1,0434	0,7834	1,4892	1,1183
1200	36,488	28,173	33,633	25,318	1,0509	0,7913	1,5005	1,1296
1300	36,752	28,437	3,863	25,548	1,058	0,7984	1,5106	1,1396
1400	36,999	28,684	34,076	25,761	1,0647	0,8051	1,5202	1,1493

¹Значения объемных теплоемкостей в таблице IV-XI относятся к массе газа, заключенной в 1 м³ его при нормальных условиях.

Продолжение таблице IV

1500	37,242	28,927	34,282	25,967	1,0714	0,8114	1,5294	1,1585
1600	37,48	29,165	34,474	26,159	1,0773	0,8173	1,5378	1,1669
1700	37,715	29,400	34,658	26,343	1,0831	0,8231	1,5462	1,1752
1800	37,945	29,63	34,834	26,519	1,0886	0,8286	1,5541	1,1832
1900	38,175	29,86	35,006	26,691	1,094	0,834	1,5617	1,1907
2000	38,406	30,091	35,169	26,854	1,099	0,839	1,5692	1,1978
2100	38,636	30,321	35,328	27,013	1,1041	0,8441	1,5759	1,205
2200	39,858	30,543	35,483	27,168	1,1087	0,8491	1,583	1,2121
2300	39,08	30,765	35,634	27,319	1,1137	0,8537	1,5897	1,2188
2400	39,293	30,978	35,785	27,47	1,1183	0,8583	1,5964	1,2255
2500	39,502	31,187	35,927	27,612	1,1229	0,8629	1,6027	1,2318
2600	39,708	31,393	36,069	27,754	1,1271	0,8675	1,609	1,238
2700	39,909	31,594	36,207	27,892	1,1313	0,8717	1,6153	1,2443

ТАБЛИЦА V

ТЕПЛОЕМКОСТЬ АЗОТА

	М		тпоемисет	I D	Массовая		Объемная	
Температура Мольная теплоемкость в кДж/(кмоль.град)					теплоем	мкость в	теплоемкость в	
					кДж/(кг.град)		$\kappaДж/(м^3.град)$	
t в °C	μc_p	μςυ	μc_{pm}	$\mu c_{\upsilon m}$	c_{pm}	$C_{\upsilon m}$	c'_{pm}	c'_{g_m}
0	29,115	20,800	29,115	20,800	1,0392	0,7423	1,2987	0,9278

100	29,199	20,884	29,144	20,829	1,0404	0,7427	1,3004	0,9295
200	29,471	21,156	29,228	20,913	1,0434	0,7465	1,3038	0,9328
300	29,952	21,637	29,383	21,068	1,0488	0,7519	1,3109	0,9399
400	30,576	22,261	29,601	21,289	1,0567	0,7599	1,3205	0,9496
500	31,250	22,935	29,864	21,549	1,0660	0,7691	1,3322	0,9613
600	31,920	23,605	30,149	21,834	1,0760	0,7792	1,3452	0,9743
700	32,540	24,225	30,451	22,136	1,0869	0,7900	1,3586	0,9877
800	33,101	24,786	30,748	22,433	1,0974	0,8005	1,3716	1,0006
900	33,599	25,284	31,037	22,722	1,1078	0,8110	1,3845	1,0136
1000	34,039	25,724	31,313	22,998	1,1179	0,8210	1,3971	1,0178
1100	34,424	26,109	31,577	23,262	1,1271	0,8302	1,4080	1,0379
1200	34,773	26,448	31,828	23,513	1,1359	0,8395	1,4202	1,0492
1300	35,070	26,745	32,067	23,752	1,1447	0,8478	1,4306	1,0597
1400	35,330	27,005	32,293	23,978	1,1526	0,8558	1,4407	1,0697
1500	35,556	27,231	32,502	24,187	1,1602	0,8633	1,4499	1,0789
1600	35,757	27,432	32,699	24,384	1,1673	0,8704	1,4587	1,0877
1700	35,937	27,612	32,883	24,568	1,1736	0,8771	1,4671	1,0961
1800	36,100	27,775	33,055	24,740	1,1798	0,8830	1,4746	1,1036
1900	36,247	27,922	33,218	24,903	1,1857	0,8889	1,4821	1,1112
2000	36,377	28,052	33,373	25,058	1,1911	0,8943	1,4888	1,1179
2100	36,494	28,169	33,520	25,205	1,1966	0,8997	1,4955	1,1246
2200	36,603	28,278	33,658	25,343	1,2012	0,9048	1,5018	1,1304
2300	36,703	28,378	33,787	25,472	1,2058	0,9094	1,5072	1,1363
2400	36,795	28,470	33,909	25,594	1,2104	0,9136	1,5127	1,1417
2500	36,879	28,554	34,022	25,707	1,2142	0,9177	1,5177	1,1468

ТАБЛИЦА VI

ТЕПЛОЕМКОСТЬ ОКИСИ УГЛЕРОДА

	М	ольная теі	поемкост	T D	Maco	совая	Объемная	
Температура	1V1		оль.град)	D D	теплоем	мкость в	теплоемкость в	
		кдж/(км	оль.град)		кДж/(кг.град)		кДж/(м	и ³ .град)
t B °C	μc _p	μςυ	μc_{pm}	μc_{vm}	c_{pm}	c_{vm}	C_{pm}	c'_{g_m}
0	29,123	20,808	29,123	20,808	1,0396	0,7427	1,2992	0,9282
100	29,262	20,947	29,178	20,863	1,0417	0,7448	1,3017	0,9307
200	29,647	21,332	29,303	20,988	1,0463	0,7494	1,3071	0,9362
300	30,254 21,939 29,517 21,202 1		1,0538	0,7570	1,3167	0,9458		
400	30,974	22,659	29,789	21,474	1,0634	0,7666	1,3289	0,9579
500	31,707	23,392	30,099	21,784	1,0748	0,7775	1,3427	0,9718
600	32,402	24,087	30,425	22,110	1,0861	0,7892	1,3574	0,9864
700	33,025	24,710	30,752	22,437	1,0978	0,8009	1,3720	1,0011
800	33,574	25,259	31,070	22,755	1,1091	0,8122	1,3862	1,0153
900	34,055 25,740 31,376 23,0		23,061	1,1200	0,8231	1,3996	1,0287	
1000	34,470	26,155	31,665	23,350	1,1304	0,8336	1,4126	1,0417
1100	34,826	26,511	31,937	23,622	1,1401	0,8432	1,4248	1,0538

1200	35,140	26,825	32,192	23,877	1,1493	0,8566	1,4361	1,0651
1300	35,412	27,097	32,427	24,112	1,1577	0,8608	1,4465	1,0756
1400	35,646	27,331	32,653	24,338	1,1656	0,8688	1,4566	1,0856
1500	35,856	27,541	32,858	24,543	1,1731	0,8763	1,4658	1,0948
1600	36,040	27,725	33,051	24,736	1,1798	0,883	1,4746	1,1036
1700	36,203	27,888	33,231	24,916	1,1865	0,8893	1,4825	1,1116
1800	36,350	28,035	33,402	25,087	1,1924	0,8956	1,4901	1,1191
1900	36,480	28,165	33,561	25,246	1,1983	0,9014	1,4972	1,1262
2000	36,597	28,282	33,708	25,393	1,2033	0,9064	1,5039	1,1329
2100	36,706	28,391	33,850	25,535	1,2083	0,9115	1,5102	1,1392
2200	36,802	28,487	33,98	25,665	1,2129	0,9161	1,516	1,1451
2300	36,894	28,579	34,106	25,791	1,2175	0,9207	1,5215	1,1505
2400	36,978	28,663	34,223	25,908	1,2217	0,9249	1,5269	1,1560
2500	37,053	28,738	34,336	26,021	1,2259	0,9291	1,5320	1,1610

ТАБЛИЦА VII

ТЕПЛОЕМКОСТЬ ВОДОРОДА Массовая Объемная Мольная теплоемкость в теплоемкость в Температура теплоемкость в кДж/(кмоль.град) $\kappa Дж/(м^3.град)$ кДж/(кг.град) c'_{pm} c_{g_m} $t \, {\rm B}^{\, {\rm o}} {\rm C}$ μc_p μc_{υ} μc_{pm} $\mu c_{\upsilon m}$ c_{pm} $C_{\upsilon m}$ 0 28,617 20,302 28,617 20,302 14,195 10,071 1,2766 0,9056 29,128 100 20,813 28,935 20,62 14,353 10,228 1,2908 0,9198 200 29,241 20,926 29,073 20,758 14,421 10,297 1,2971 0,9261 29,299 20,808 300 20,984 29,123 6 10,322 1,2992 0,9282 400 29,396 21,081 29,186 20,871 14,477 10,353 1,3021 0,9311 500 29,559 21,244 29,249 20,934 14,509 10,384 1,305 0,9341 600 29,793 21,478 29,316 21,001 14,542 10,417 1,308 0,937 21,784 29,408 700 30,099 21,093 14,587 10,463 1,3121 0,9412 800 30,472 22,157 29,517 21,202 14,641 10,517 1,3167 0,9458 900 22,554 30,869 29,647 21,332 14,706 10,581 1,3226 0,9516 1000 31,284 22,969 29,789 21,474 14,776 10,652 1,3289 0,9579 1100 31,723 23,408 29,944 14,853 10,727 1,336 0,9650 21,629 1200 23,84 32,155 30,107 21,792 14,934 10,809 1,3431 0,9722 1300 32,59 24,275 30,288 21,973 15,023 10,899 1,3511 0,9801 1400 33 24,685 22,152 15,113 10,988 1,3591 0,9881 30,467 1500 33,394 25,079 30,647 22,322 15,202 11,077 1,3674 0,9964 1600 33,762 25,447 30,832 22,517 15,294 11,169 1,3754 1,0044 1700 25,799 34,114 31,012 22,697 15,383 11,258 1,3833 1,0124 1800 26,13 31,192 22,877 11,347 1,3917 1,0207 34,445 15,472 1900 34,763 26,448 31,372 23,057 15,561 11,437 1,3996 1,0287 $23,2\overline{33}$ 2000 35,056 26,741 31,548 15,649 11,524 1,4076 1,0366

2100	35,332	27,017	31,723	23,408	15,736	11,611	1,4151	1,0442
2200	35,605	27,29	31,891	23,576	15,819	11,694	1,4227	1,0517
2300	35,852	27,537	32,058	23,743	15,902	11,798	1,4302	1,0593
2400	36,09	27,775	32,222	23,907	15,983	11,858	1,4373	1,0664
2500	36,316	28,001	32,385	24,07	16,064	11,937	1,4449	1,0739
2600	36,53	28,215	32,54	24,225	16,141	12,016	1,4516	1,0806
2700	36,731	28,416	32,691	24,376	16,215	12,091	1,4583	1,0873

ТАБЛИЦА VIII

ТЕПЛОЕМКОСТЬ УГЛЕКИСЛОГО ГАЗА

Температура	M		плоемкост оль.град)	ь в	теплоем	совая мкость в	Объемная теплоемкость в кДж/(м ³ .град)		
t B °C	μc _p	μςυ	μc_{pm}	$\mu c_{\upsilon m}$	c_{pm}	c_{vm}	c_{pm}	c'_{g_m}	
0	35,860	27,545	35,86	27,545	0,8148	0,6259	1,5998	1,2288	
100	40,206	31,891	38,112	29,797	0,8658	0,677	1,7003	1,3293	
200	43,689	35,374	40,059	31,744	0,9102	0,7214	1,7373	1,4164	
300	46,515	38,2	41,755	33,44	0,9487	0,7599	1,8627	1,4918	
400	48,86	40,515	43,25	34,935	0,9826	0,7938	1,9297	1,5587	
500	50,815	42,5	44,573	36,258	1,0128	0,824	1,9887	1,6178	
600	52,452	44,137	45,743	37438	1,0396	0,8508	2,0411	1,6701	
700	53,826	45,511	46,813	38,498	1,0639	0,8746	2,0884	1,7174	
800	54,977	46,662	47,763	39,448	1,0852	0,8964	2,1311	1,7601	
900	55,952	47,637	48,617	40,302	1,1045	0,9157	2,1692	1,7982	
1000	56,773	48,458	49,392	41,077	1,1225	0,9332	2,2035	1,8326	
1100	57,472	49,157	50,099	41,784	1,1384	0,9496	2,2349	1,864	
1200	58,071	49,756	50,74	42,425	1,153	0,9638	2,2638	1,8929	
1300	58,586	50,271	51,322	43,007	1,166	0,9772	2,2898	1,9188	
1400	59,03	50,715	51,858	43,543	1,1782	0,9893	2,3136	1,9427	
1500	59,411	51,096	52,348	44,033	1,1895	1,0006	2,3354	1,9644	
1600	59,797	51,422	52,8	44,485	1,1995	1,0107	2,3555	1,9845	
1700	60,022	51,707	53,218	44,903	1,2091	1,0203	2,3743	2,0034	
1800	60,269	51,954	53,604	45,289	1,2179	1,0291	2,3915	2,0205	
1900	60,478	52,163	53,959	45,644	1,2259	1,0371	2,4074	2,0365	
2000	60,654	52,339	54,29	45,975	1,2334	1,0446	2,4221	2,0511	
2100	60,801	52,486	54,596	46,281	1,2405	1,0517	2,4359	2,0649	
2200	60,918	52,603	54,881	46,566	1,2468	1,058	2,4484	2,0775	
2300	61,006	52,691	55,144	46,829	1,2531	1,0639	2,4602	2,0892	
2400	61,06	52,745	55,391	47,076	1,2586	1,0697	2,471	2,1001	
2500	61,085	52,77	55,617	47,302	1,2636	1,0748	2,4811	2,1101	

ТАБЛИЦА ІХ

ТЕПЛОЕМКОСТЬ ВОДЯНОГО ПАРА

Температура	Мольная теплоемкость в	Массовая	Объемная
-------------	------------------------	----------	----------

		кДж/(км	оль.град)			мкость в	теплоемкость в $кДж/(м^3.град)$	
t в °C	μc _p	μςυ	μc_{pm}	$\mu c_{\upsilon m}$	c_{pm}	c_{vm}	c_{pm}	c_{g_m}
0	33,499	25,184	33,499	25,184	1,8594	1,398	1,4943	1,1237
100	34,055	25,74	33,741	25,426	1,8728	1,4114	1,5052	1,1342
200	34,964	26,649	34,118	25,803	1,8937	1,4323	1,5223	1,1514
300	36,036	27,721	34,575	26,26	1,9192	1,4574	1,5424	1,1715
400	37,191	28,876	35,09	26,775	1,9477	1,4863	1,5654	1,1945
500	38,406	30,091	35,63	27,315	1,9778	1,516	1,5897	1,2188
600	39,662	31,347	36,195	27,88	2,0092	1,5474	1,6148	1,2439
700	40,951	32,636	36,789	28,474	2,0419	1,5805	1,6412	1,2703
800	42,249	33,934	37,392	29,077	2,0754	1,614	1,668	1,2971
900	43,513	35,198	38,008	29,693	2,1097	1,6483	1,6957	1,3247
1000	44,723	36,408	38,619	30,304	2,1436	1,6823	1,7229	1,3519
1100	45,858	37,543	39,226	30,911	2,1771	1,7158	1,7501	1,3791
1200	46,913	38,598	39,825	31,51	2,2106	1,7488	1,7769	1,4059
1300	47,897	39,542	40,407	32,092	2,2429	1,7815	1,8028	1,4319
1400	48,801	40,486	40,976	32,661	2,2743	1,8129	1,828	1,457
1500	49,639	41,324	41,525	33,21	2,3048	1,8434	1,8527	1,4817
1600	50,409	42,094	42,056	33,741	2,3346	1,8728	1,8761	1,5052
1700	51,133	42,818	42,576	34,261	2,363	1,9016	1,8996	1,5286
1800	51,782	43,467	43,07	34,755	4,3904	1,9293	1,9213	1,5504
1900	52,377	44,062	43,539	35,224	2,4166	1,9552	1,9423	1,5713
2000	52,93	44,615	43,995	35,68	2,4422	1,9804	1,9628	1,5918
2100	53,449	45,134	44,435	36,12	2,4664	2,0051	1,9824	1,6115
2200	53,93	45,615	44,853	36,538	2,4895	2,0281	2,0009	1,6299
2300	54,37	46,055	45,255	36,94	2,5121	2,0503	2,0189	1,6479
2400	54,78	46,465	45,644	37,33	2,5334	2,072	2,0365	1,6655
2500	55,161	46,846	46,017	37,702	2,5544	2,0926	2,0528	1,6818
2600	55,525	47,21	46,381	38,066	2,5745	2,1131	2,0691	1,6982
2700	55,864	47,549	47,729	38,414	2,5937	2,1323	2,0864	1,7137
2800	56,187	47,873	47,06	38,745	2,6121	2,1508	2,0997	1,7287
2900	56,488	48,173	47,378	39,063	2,6297	2,1683	2,1135	1,7425

ТЕПЛОЕМКОСТЬ СЕРНИСТОГО ГАЗАТАБЛИЦА Х

Температура	M		плоемкост оль.град)	ь в	Массовая теплоемкость в кДж/(кг.град)		Объемная теплоемкость в кДж/(м ³ .град)	
t B °C	μc_p μc_v μc_{pm} μc_{vm}				c_{pm}	c_{vm}	c'_{pm}	c_{g_m}
0	38,85	30,52	38,85	30,52	0,607	0,477	1,733	1,361
100	42,41	34,08	40,65	32,32	0,636	0,507	1,813	1,44
200	45,55	37,22	42,33	34	0,662	0,532	1,888	1,516
300	48,23	39,9	43,88	35,55	0,687	0,557	1,955	1,587

400	50,24	41,91	45,22	36,89	0,708	0,578	2,018	1,645
500	51,71	43,38	46,39	38,06	0,724	0,595	2,068	1,7
600	52,88	44,55	47,35	39,02	0,737	0,607	2,114	1,742
700	53,76	45,43	48,23	39,9	0,754	0,624	2,152	1,779
800	54,43	46,1	48,94	40,61	0,762	0,632	2,181	1,813
900	55,01	46,68	49,61	41,28	0,775	0,645	2,215	1,842
1000	55,43	47,1	50,16	41,83	0,783	0,653	2,236	1,867
1100	55,77	47,44	50,66	42,33	0,791	0,662	2,261	1,888
1200	56,06	47,73	51,08	42,75	0,795	0,666	2,278	1,905

ТАБЛИЦА XI

теплоемкость воздуха

Температура	M	Мольная теплоемкость в кДж/(кмоль.град) $\mu c_{p} \qquad \mu c_{pm} \qquad \mu c_{pm}$			теплоем	совая мкость в гг.град)	Объемная теплоемкость в $\kappa \text{Дж/(м}^3$.град)	
t в °С	μc_p	μc_{υ}	μc_{pm}	μc_{vm}	c_{pm}	c_{vm}	c'_{pm}	c_{g_m}
0	29,073	20,758	29,073	20,758	1,0036	0,7164	1,2971	0,9261
100	29,266	20,951	29,152	20,838	1,0061	0,7193	1,3004	0,9295
200	29,676	21,361	29,299	20,984	1,0115	0,7243	1,3071	0,9362
300	30,266	21,951	29,521	21,206	1,0191	0,7319	1,3172	0,9462
400	30,949	22,634	29,789	21,474	1,0283	0,7415	1,3289	0,9579
500	31,640	23,325	30,095	21,78	1,0387	0,7519	1,3427	0,9718
600	32,301	23,986	30,405	22,09	1,0436	0,7624	1,3565	0,9856
700	32,900	24,585	30,723	22,408	1,0605	0,7733	1,3708	0,9998
800	33,432	25,117	31,028	22,713	1,0711	0,7842	1,3842	1,0312
900	33,905	25,590	31,321	23,006	1,0815	0,7942	1,3976	1,0262
1000	34,315	26,000	31,598	23,283	1,0907	0,8039	1,4097	1,0387
1100	34,679	26,394	31,862	23,547	1,0999	0,8127	1,4214	1,0505
1200	35,002	26,687	32,109	23,794	1,1082	0,8215	1,4327	1,0618
1300	35,291	26,976	32,343	24,028	1,1166	0,8994	1,4432	1,0722
1400	35,546	27,231	32,565	24,25	1,1242	0,8969	1,4528	1,0819
1500	35,772	27,457	32,774	24,459	1,1313	0,8441	1,4620	1,0911
1600	35,977	27,662	32,967	24,652	1,1380	0,8508	1,4709	0,0999
1700	36,170	27,855	33,151	24,836	1,1443	0,8570	1,4788	1,1078
1800	36,346	28,031	33,319	25,004	1,1501	0,8633	1,4867	1,1158
1900	36,509	28,194	33,482	25,167	1,1560	0,8688	1,4939	1,1229
2000	36,655	28,340	33,641	25,326	1,1610	0,8742	1,5010	1,1296
2100	36,798	28,483	33,787	25,472	1,1664	0,8792	1,5072	1,1363
2200	36,928	28,613	33,926	25,611	1,1710	0,8843	1,5135	1,1426
2300	37,053	28,738	34,060	25,745	1,1757	0,8889	1,5194	1,1484
2400	37,170	28,855	34,185	25,870	1,1803	0,8930	1,5253	1,1543
2500	37,279	28,964	34,307	25,992	1,1840	0,8972	1,5302	1,1593

НАСЫ ЩЕННИЙ ВОДЯНОЙ ПАР (ПО ТЕМПЕРАТУРАМ)

Параметры даны в единицах системы СИ

t B		,9'в	<i>9</i> "в	р"в	<i>l</i> в	<i>l</i> " в	<i>r</i> в	, У В	у " в
°C	Р в бар	м ³ / кг	м³ / кг	кг / м ³	ι в кДж/кг	ι в кДж/кг	кДж/кг	х в кДж/(кг∙град)	қДж/(кг град)
0,01	0,006108	0,0010002	206,3	0,004847	0	2501	2501	0	9,1544
5	0,008719	0,0010002	147,2	0,004847	21,05	2510	2489	0,0762	9,0241
10	0,008717	0,0010001	106,42	0,000793	42,04	2519	2477	0,0702	8,8994
15	0,012277	0,0010004						,	· ·
20	0,017041	0,001001	77,97	0,01282	62,97	2528	2465	0,2244	8,7806
			57,84	0,01729	83,9	2537	2454	0,2964	8,6665
25	0,03166	0,001003	43,4	0,02304	104,81	2547	2442	0,3672	8,5570
30	0,04241	0,0010044	32,93	0,03037	125,71	2556	2430	0,4366	8,4523
35	0,05622	0,0010061	25,24	0,03962	146,6	2565	2418	0,5049	8,3519
40	0,07375	0,0010079	19,55	0,05115	167,5	2574	2406	0,5723	8,2559
45	0,09584	0,0010099	15,28	0,06544	188,4	2582	2394	0,6384	8,1638
50	0,12335	0,0010121	12,04	0,08306	209,3	2592	2383	0,7038	0,0753
55	0,1574	0,0010145	9,578	0,1044	230,2	2600	2370	0,7679	7,9901
60	0,19917	0,0010171	7,678	0,1302	251,1	2609	2358	0,8311	7,9084
65	0,2501	0,0010199	6,201	0,1613	272,1	2617	2345	0,8934	7,8297
70	0,3117	0,0010228	5,045	0,1982	293	2626	2333	0,9549	7,7544
75	0,3855	0,0010258	4,133	0,242	314	2635	2321	1,0157	7,6815
80	0,4736	0,001029	3,408	0,2934	334,9	2643	2308	1,0753	7,6116
85	0,5781	0,0010324	2,828	0,3536	355,9	2651	2295	1,1342	7,5438
90	0,7011	0,0010359	2,361	0,4235	377	2659	2282	1,1925	7,4787
95	0,8451	0,0010396	1,982	0,5045	398	2668	2270	1,2502	7,4155
100	1,0132	0,0010435	1,673	0,5977	419,1	2676	2257	1,3071	7,3547
105	1,2079	0,0010474	1,419	0,7047	440,2	2683	2243	1,3632	7,2959
110	1,4326	0,0010515	1,21	0,8264	461,3	2691	2230	1,4184	7,2387
115	1,6905	0,0010559	1,036	0,9652	482,5	2698	2216	1,4733	7,1832
120	1,9854	0,0010603	0,8917	1,121	503,7	2706	2202	1,5277	7,1298
125	2,3208	0,0010649	0,7704	1,298	525	2713	2188	1,5814	7,0777
130	2,7011	0,0010697	0,6683	1,496	546,3	2721	2174	1,6345	7,2720
135	3,13	0,0010747	0,582	1,718	567,5	2727	2159	1,6869	6,9781
140	3,614	0,0010798	0,5087	1,966	589	2734	2145	1,7392	6,9304
					1				l .

Продолжение таблице XII

								1 77	raomine m
t B	Р в	<i>9</i> ' в	$\mathcal{G}^{"}{}_{B}$	$p^{"}$ в	<i>l</i> в	<i>l</i> "в	<i>r</i> в	<i>S</i> B	<i>S</i> "B
°C	бар	м³ / кг	$M^3/\kappa 2$	кг / м ³	кДж/кг	кДж/кг	кДж/кг	кДж/(кг град)	кДж/(кг град)
145	4,155	0,0010851	0,4461	2,242	610,5	2740	2130	1,7907	6,8839
150	4,76	0,0010906	0,3926	2,547	632,2	2746	2114	1,8418	6,8383
155	5,433	0,0010962	0,3466	2,885	653,9	2753	2099	1,8924	6,794
160	6,18	0,0011021	0,3068	3,258	675,5	2758	2082	1,9427	6,7508
165	7,008	0,0011081	0,2725	3,67	697,3	2763	2066	1,9924	6,7081
170	7,92	0,0011144	0,2426	4,122	719,2	2769	2050	2,0417	6,6666
175	8,925	0,0011208	0,2166	4,617	741,1	2773	2032	2,0909	6,6256
180	10,027	0,0011275	0,1939	5,157	763,1	2778	2015	2,1395	6,5858
185	11,234	0,0011344	0,1739	5,75	785,2	2782	1997	2,1876	6,5465
190	12,553	0,0011415	0,1564	6,394	807,5	2786	1979	2,2357	6,5074
195	13,989	0,0011489	0,1409	7,097	829,9	2790	1960	2,2834	6,4694
200	15,551	0,0011565	0,1272	7,862	852,4	2793	1941	2,3308	6,4318
205	17,245	0,0011644	0,1151	8,688	875	2796	1921	2,3777	6,3945
210	19,08	0,0011726	0,1043	9,588	897,7	2798	1900	2,4246	6,3577

215	21,062	0,0011812	0,09465	10,56	920,7	2800	1879	2,4715	6,3212
220	23,201	0,00119	0,08606	11,62	943,7	2802	1858	2,5179	6,2849
225	25,504	0,0011992	0,07837	12,76	966,9	2802	1835	2,564	6,2488
230	27,979	0,0012087	0,07147	13,99	990,4	2803	1813	2,6101	6,2133
235	30,635	0,0012187	0,06527	15,32	1013,9	2804	1790	2,6561	6,178
240	33,48	0,0012291	0,05967	16,76	1037,5	2803	1766	2,7021	6,1425
245	36,524	0,0012399	0,05462	18,3	1061,6	2803	1741	2,7478	6,1073
250	39,776	0,0012512	0,05006	19,98	1085,7	2801	1715	2,7934	6,0721
255	43,25	0,0012631	0,04591	21,78	1110,2	2799	1689	2,8394	6,0366
260	46,94	0,0012755	0,4215	23,72	1135,1	2796	1661	2,8851	6,0013
265	50,87	0,0012886	0,03872	25,83	1160,2	2794	1634	2,9307	5,9657
270	55,05	0,0013023	0,0356	28,09	1185,3	2790	1605	2,9764	5,9297
275	59,49	0,0013168	0,03274	30,53	1210,7	2785	1574,2	3,0223	5,8938
280	64,91	0,0013321	0,03013	33,19	1236,9	2780	1542,9	3,0681	5,8573
285	69,18	0,0013483	0,02774	36,05	1263,1	2773	1510,2	1,1146	5,8205
290	74,45	0,0013655	0,02554	39,15	1290	2766	1476,3	3,1611	5,7827
295	80,02	0,0013839	0,02351	42,53	1317,2	2758	1441	3,2079	5,7443

Продолжение таблице XII

								1 7	
<i>t</i> B	Р в	Э в	<i>9</i> "в	р"в	$l^{'}$ в	$l^{"}$ в	<i>r</i> B	S B	<i>S</i> "B
°C	бар	м³ / кг	м³ / кг	кг / м ³	кдж/кг	кдж/кг	кдж/кг	кдж/(кг град)	кдж/(кг град)
300	85,92	0,0014036	0,02164	46,21	1344,9	2749	1404,2	3,2548	5,7049
305	92,14	0,001425	0,01992	50,2	1373,1	2739	1365,6	3,3026	5,6647
310	98,7	0,001447	0,01832	54,58	1402,1	2727	1325,2	3,3508	5,6233
315	105,61	0,001472	0,01683	59,42	1431,7	2714	1282,3	3,3996	5,5802
320	112,9	0,001499	0,01545	64,72	1462,1	2700	1237,8	3,4495	5,5353
325	120,57	0,001529	0,01417	70,57	1493,6	2684	1190,3	3,5002	5,4891
330	128,65	0,001562	0,01297	77,1	1526,1	2666	1139,6	3,5522	5,4412
335	137,14	0,001599	0,01184	84,46	1559,8	2646	1085,7	5,6056	5,3905
340	146,08	0,001639	0,01078	92,76	1594,7	2622	1027	3,6605	5,3361
345	155,48	0,001686	0,009771	102,34	1639	2595	963,5	3,7184	5,2769
350	165,37	0,001741	0,008803	113,6	1671	2565	893,5	3,7786	5,2117
355	175,77	0,001807	0,007869	127,1	1714	2527	813	3,8439	5,1385
360	186,74	0,001894	0,006943	144,0	1762	2481	719,3	3,9162	5,0530
365	198,3	0,00202	0,00599	166,8	1817	2421	603,5	4,0000	4,9463
370	210,53	0,00222	0,00493	203	1893	2331	438,4	4,1137	4,7951
374	225,22	0,0028	0,00347	288	485,3	512,7	27,4	1,0332	1,0755

Примечание. Параметры критического состояния: $t_{\rm kp}$ =374,15°C, $P_{\rm kp}$ =221,29 бар, $\mathcal{G}_{\rm kp}=0{,}00326~{\rm m}^3/{\rm kr}$.

ТАБЛИЦА XIII

НАСЫЩЕННИЙ ВОДЯНОЙ ПАР (ПО ДАВЛЕНИЯМ)

Параметры даны в единицах системы СИ

Р в бар	tв°C	9 ['] в м³/кг	9" _в м³/кг	р"в кг/м ³	l ['] в кДж/кг	l" в кДж/кг	r в кДж/кг	s в кДж/(кг град)	S в кДж/(кг град)
0,010	6,92	0,0010001	129,9	0,0077	29,32	2513	2484	0,1054	8,975
0,015	13,038	0,0010007	87,9	0,001138	54,75	2525	2470	0,1958	8,827
0,020	17,514	0,0010014	66,97	0,01493	73,52	2533	2459	0,2609	8,722
0,025	21,094	0,0010021	54,24	0,01843	88,5	2539	2451	0,3124	8,642
0,030	24,097	0,0010028	45,66	0,0219	101,04	2545	2444	0,3546	8,576
0,035	26,692	0,0010035	39,48	0,02533	111,86	2550	2438	0,3908	8,521
0,040	28,979	0,0010041	34,81	0,02873	121,42	2554	2433	0,4225	8,473

0,045	31,033	0,0010047	31,13	0,03211	130	2557	2427	0,4507	8,431
0,050	32,88	0,0010053	28,19	0,03547	137,83	2561	2423	0,4761	8,393
0,060	36,18	0,0010064	23,74	0,04212	151,5	2567	2415	0,5207	8,328
0,070	39,03	0,0010075	20,53	0,04871	163,43	2572	2409	0,5591	8,274
0,080	41,54	0,0010085	18,1	0,05525	173,9	2576	2402	0,5927	8,227
0,090	43,79	0,0010094	16,2	0,06172	183,3	2580	2397	0,6225	8,186
0,10	45,84	0,0010103	14,68	0,06812	191,9	2584	2392	0,6492	8,149
0,11	47,72	0,0010111	13,4	0,07462	199,7	2588	2388	0,674	8,116
0,12	49,45	0,0010119	12,35	0,08097	207	2591	2384	0,6966	8,085
0,13	51,07	0,0010126	11,46	0,08726	213,8	2594	2380	0,7174	8,057
0,14	52,58	0,0010133	10,69	0,09354	220,1	2596	2376	0,7368	8,031
0,15	54	0,001014	10,02	0,0998	226,1	2599	2373	0,755	8,007
0,20	60,08	0,0010171	7,647	0,1308	251,4	2609	2358	0,8321	7,907
0,25	64,99	0,0010199	6,202	0,1612	272	2618	2346	0,8934	7,83
0,30	69,12	0,0010222	5,226	0,1913	289,3	2625	2336	0,9441	7,769
0,40	75,88	0,0010264	3,994	0,2504	317,7	2636	2318	1,0261	7,67
0,50	81,35	0,0010299	3,239	0,3087	340,6	2645	2204	1,091	7,593
0,60	85,95	0,001033	2,732	0,3661	360	2653	2293	1,1453	7,531
0,70	89,97	0,0010359	2,364	0,423	376,8	2660	2283	1,1918	7,479
0,80	93,52	0,0010385	2,087	0,4792	391,8	2665	2273	1,233	7,434
0,90	96,72	0,0010409	1,869	0,535	405,3	2670	2265	1,2696	7,394
1,00	9,64	0,0010432	1,694	0,5903	417,4	2675	2258	1,3026	7,36

Продолжение таблице XIII

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									продолжение	таолице инг
1,10		t B °C								
1,20 104,81 0,0010472 1,429 0,6999 439,4 2683 2244 1,3606 7,298 1,30 107,14 0,0010492 1,325 0,7545 449,2 2687 2238 1,3866 7,271 1,40 109,33 0,001051 1,236 0,8088 458,5 2690 2232 1,4109 7,246 1,50 111,38 0,0010527 1,159 0,8627 467,2 2693 2226 1,4336 7,223 1,60 113,32 0,0010575 1,091 0,9164 475,4 2696 2221 1,455 7,202 1,70 115,17 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010691 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2									, ,	
1,30 107,14 0,0010492 1,325 0,7545 449,2 2687 2238 1,3866 7,271 1,40 109,33 0,001051 1,236 0,8088 458,5 2690 2232 1,4109 7,246 1,50 111,38 0,0010527 1,159 0,8627 467,2 2693 2226 1,4336 7,223 1,60 113,32 0,0010543 1,091 0,9164 475,4 2696 2221 1,455 7,202 1,70 115,17 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010695 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,	1,10	,			*				· ·	
1,40 109,33 0,001051 1,236 0,8088 458,5 2690 2232 1,4109 7,246 1,50 111,38 0,0010527 1,159 0,8627 467,2 2693 2226 1,4336 7,223 1,60 113,32 0,0010543 1,091 0,9164 475,4 2696 2221 1,455 7,202 1,70 115,17 0,0010559 1,031 0,9699 483,2 2699 2216 1,4752 7,182 1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010591 0,929 1,076 497,9 2704 2206 1,5126 7,145 2,00 120,23 0,0010605 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010633 0,898 1,235 517,8 2711 2193 1,563 7,096 2,30	1,20	104,81	0,0010472	1,429	0,6999	439,4	2683	2244	1,3606	7,298
1,50 111,38 0,0010527 1,159 0,8627 467,2 2693 2226 1,4336 7,223 1,60 113,32 0,0010543 1,091 0,9164 475,4 2696 2221 1,455 7,202 1,70 115,17 0,0010559 1,031 0,9699 483,2 2699 2216 1,4752 7,182 1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010591 0,929 1,076 497,9 2704 2206 1,5126 7,145 2,00 120,23 0,0010605 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,081 2,4	1,30	107,14	0,0010492	1,325	0,7545		2687	2238	1,3866	7,271
1,60 113,32 0,0010543 1,091 0,9164 475,4 2696 2221 1,455 7,202 1,70 115,17 0,0010559 1,031 0,9699 483,2 2699 2216 1,4752 7,182 1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010591 0,929 1,076 497,9 2704 2206 1,5126 7,145 2,00 120,23 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 <td>1,40</td> <td>109,33</td> <td>0,001051</td> <td>1,236</td> <td>0,8088</td> <td>458,5</td> <td>2690</td> <td>2232</td> <td>1,4109</td> <td>7,246</td>	1,40	109,33	0,001051	1,236	0,8088	458,5	2690	2232	1,4109	7,246
1,70 115,17 0,0010559 1,031 0,9699 483,2 2699 2216 1,4752 7,182 1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010591 0,929 1,076 497,9 2704 2206 1,5126 7,145 2,00 120,23 0,0010605 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 <td>1,50</td> <td>111,38</td> <td>0,0010527</td> <td>1,159</td> <td>0,8627</td> <td>467,2</td> <td>2693</td> <td>2226</td> <td>1,4336</td> <td>7,223</td>	1,50	111,38	0,0010527	1,159	0,8627	467,2	2693	2226	1,4336	7,223
1,80 116,94 0,0010575 0,9773 1,023 490,7 2702 2211 1,4943 7,163 1,90 118,62 0,0010591 0,929 1,076 497,9 2704 2206 1,5126 7,145 2,00 120,23 0,0010605 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010697 0,6684 1,496 546,2 2721 2178 1,621 7,04 2,7	1,60	113,32	0,0010543	1,091	0,9164	475,4	2696	2221	1,455	7,202
1,90 118,62 0,0010591 0,929 1,076 497,9 2704 2206 1,5126 7,145 2,00 120,23 0,0010605 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8	1,70	115,17	0,0010559	1,031	0,9699	483,2	2699	2216	1,4752	7,182
2,00 120,23 0,0010605 0,8854 1,129 504,8 2707 2202 1,5302 7,127 2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010799 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8	1,80	116,94	0,0010575	0,9773	1,023	490,7	2702	2211	1,4943	7,163
2,10 121,78 0,0010619 0,8459 1,182 511,4 2709 2198 1,547 7,111 2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9	1,90	118,62	0,0010591	0,929	1,076	497,9	2704	2206	1,5126	7,145
2,20 123,27 0,0010633 0,8098 1,235 517,8 2711 2193 1,563 7,096 2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 <	2,00	120,23	0,0010605	0,8854	1,129	504,8		2202	1,5302	7,127
2,30 124,71 0,0010646 0,7768 1,287 524 2713 2189 1,5783 7,081 2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,667 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 <t< td=""><td>2,10</td><td>121,78</td><td>0,0010619</td><td>0,8459</td><td>1,182</td><td>511,4</td><td>2709</td><td>2198</td><td>1,547</td><td>7,111</td></t<>	2,10	121,78	0,0010619	0,8459	1,182	511,4	2709	2198	1,547	7,111
2,4 126,09 0,0010659 0,7465 1,34 529,8 2715 2185 1,5929 7,067 2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 <td< td=""><td>2,20</td><td>123,27</td><td>0,0010633</td><td>0,8098</td><td>1,235</td><td>517,8</td><td>2711</td><td>2193</td><td>1,563</td><td>7,096</td></td<>	2,20	123,27	0,0010633	0,8098	1,235	517,8	2711	2193	1,563	7,096
2,5 127,43 0,0010672 0,7185 1,392 535,4 2717 2182 1,6071 7,053 2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,4 <td< td=""><td>2,30</td><td>124,71</td><td>0,0010646</td><td>0,7768</td><td>1,287</td><td>524</td><td>2713</td><td>2189</td><td>1,5783</td><td>7,081</td></td<>	2,30	124,71	0,0010646	0,7768	1,287	524	2713	2189	1,5783	7,081
2,6 128,73 0,0010685 0,6925 1,444 540,9 2719 2178 1,621 7,04 2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,5	2,4	126,09	0,0010659	0,7465	1,34	529,8	2715	2185	1,5929	7,067
2,7 129,98 0,0010697 0,6684 1,496 546,2 2721 2175 1,634 7,027 2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,6 <td< td=""><td>2,5</td><td>127,43</td><td>0,0010672</td><td>0,7185</td><td>1,392</td><td>535,4</td><td>2717</td><td>2182</td><td>1,6071</td><td>7,053</td></td<>	2,5	127,43	0,0010672	0,7185	1,392	535,4	2717	2182	1,6071	7,053
2,8 131,2 0,0010709 0,6461 1,548 551,4 2722 2171 1,647 7,015 2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,7 <td< td=""><td>2,6</td><td>128,73</td><td>0,0010685</td><td>0,6925</td><td>1,444</td><td>540,9</td><td>2719</td><td>2178</td><td>1,621</td><td>7,04</td></td<>	2,6	128,73	0,0010685	0,6925	1,444	540,9	2719	2178	1,621	7,04
2,9 132,39 0,0010721 0,6253 1,599 556,5 2524 2167 1,66 7,003 3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 <t< td=""><td>2,7</td><td>129,98</td><td>0,0010697</td><td>0,6684</td><td>1,496</td><td>546,2</td><td>2721</td><td>2175</td><td>1,634</td><td>7,027</td></t<>	2,7	129,98	0,0010697	0,6684	1,496	546,2	2721	2175	1,634	7,027
3 133,54 0,0010733 0,6057 1,651 561,4 2725 2164 1,672 6,992 3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	2,8	131,2	0,0010709	0,6461	1,548	551,4	2722	2171	1,647	7,015
3,1 134,66 0,0010744 0,5873 1,703 56,3 2727 2161 1,683 6,981 3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	2,9	132,39	0,0010721	0,6253	1,599	556,5	2524	2167	1,66	7,003
3,2 135,75 0,0010754 0,5707 1,754 571,1 2728 2157 1,695 6,971 3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3	133,54	0,0010733	0,6057	1,651	561,4	2725	2164	1,672	6,992
3,3 136,82 0,0010765 0,5539 1,805 575,7 2730 2154 1,706 6,961 3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3,1	134,66	0,0010744	0,5873	1,703	56,3	2727	2161	1,683	6,981
3,4 137,86 0,0010776 0,5386 1,857 580,2 2731 2151 1,717 6,951 3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3,2	135,75	0,0010754	0,5707	1,754	571,1	2728	2157	1,695	6,971
3,5 138,88 0,0010786 0,5241 1,908 584,5 2732 2148 1,728 6,941 3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3,3	136,82	0,0010765	0,5539	1,805	575,7	2730	2154	1,706	6,961
3,6 139,87 0,0010797 0,5104 1,959 588,7 2734 2145 1,738 6,932 3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3,4	137,86	0,0010776	0,5386	1,857	580,2	2731	2151	1,717	6,951
3,7 140,84 0,0010807 0,4975 2,01 592,8 2735 2142 1,748 6,923 3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3,5	138,88	0,0010786	0,5241	1,908	584,5	2732	2148	1,728	6,941
3,8 141,79 0,0010817 0,4852 2,061 596,8 2736 2139 1,758 6,914	3,6	139,87	0,0010797	0,5104	1,959	588,7	2734	2145	1,738	6,932
	3,7	140,84	0,0010807	0,4975	2,01	592,8	2735	2142	1,748	6,923
3,9 142,71 0,0010827 0,4735 2,112 600,8 2737 2136 1,768 6,905	3,8	141,79	0,0010817	0,4852	2,061	596,8	2736	2139	1,758	6,914
	3,9	142,71	0,0010827	0,4735	2,112	600,8	2737	2136	1,768	6,905

4	143,62	0,0010836	0,4624	2,163	604,7	2738	2133	1,777	6,897
4,1	144,51	0,0010845	0,4518	2,213	608,5	2740	2131	1,786	6,889

Продолжение таблице XIII

Рв	t в °С	<i>9</i> B	Э"в	р"в	<i>l</i> в	<i>l</i> "в	r B	S B	<i>S</i> B
бар	IB C	м³/кг	м³ / кг	кг / м ³	кДж/кг	кДж/кг	кДж/кг	кДж/(кг град)	кДж/(кг град)
4,2	145,39	0,0010855	0,4416	2,264	612,3	2741	2129	1,795	6,881
4,3	146,25	0,0010865	0,4319	2,315	616,1	2742	2126	1,804	6,873
4,4	147,09	0,0010874	0,4227	2,366	619,8	2743	2123	1,812	6,865
4,5	147,92	0,0010883	0,4139	2,416	623,4	2744	2121	1,821	6,857
5	151,84	0,0010927	0,3747	2,669	640,1	2749	2109	1,86	6,822
6	158,84	0,0011007	0,3156	3,169	670,5	2757	2086	1,931	6,761
7	164,96	0,0011081	0,2728	3,666	697,2	2764	2067	1,992	6,709
8	170,42	0,0011149	0,2403	4,161	720,9	2769	2048	2,046	6,663
9	175,35	0,0011213	0,2149	4,654	742,8	2774	2031	2,094	6,623
10	179,88	0,0011273	0,1946	5,139	762,7	2778	2015	2,138	6,587
11	184,05	0,0011331	0,1775	5,634	781,1	2781	2000	2,179	6,554
12	187,95	0,0011385	0,1633	6,124	798,3	2785	1987	2,216	6,523
13	191,6	0,0011438	0,1512	6,614	814,5	2787	1973	2,251	6,495
14	195,04	0,001149	0,1408	7,103	830	2790	1960	2,284	6,469
15	198,28	0,0011539	0,1317	7,593	844,6	2792	1947	2,314	6,445
16	201,36	0,0011586	0,1238	8,08	858,3	2793	1935	2,344	6,422
17	204,3	0,0011632	0,1167	8,569	871,6	2795	1923	2,371	6,4
18	207,1	0,0011678	0,1104	9,058	884,4	2796	1912	2,397	6,379
19	209,78	0,0011722	0,1047	9,549	896,6	2798	1901	2,422	6,359
20	212,37	0,0011766	0,09958	10,041	908,5	2799	1891	2,447	6,34
21	214,84	0,0011809	0,09492	10,54	919,8	2800	1880	2,47	6,322
22	217,24	0,0011851	0,09068	11,03	930,9	2801	1870	2,492	6,305
23	219,55	0,0011892	0,08679	11,52	941,5	2801	1860	2,514	6,288
24	221,77	0,0011932	0,08324	12,01	951,8	2802	1850	2,534	6,272
25	223,93	0,0011972	0,07993	12,51	961,8	2802	1840	2,554	6,256
26	226,03	0,0012012	0,07688	13,01	971,7	2803	1831	2,573	6,242
27	228,06	0,001205	0,07406	13,50	981,3	2803	1822	2,592	6,227
28	230,04	0,0012088	0,07141	14,00	990,4	2803	1813	2,611	6,213
29	231,96	0,0012126	0,06895	14,50	999,4	2803	1804	2,628	6,199
30	233,83	0,0012163	0,06665	15,00	1008,3	2804	1796	2,646	6,186
32	237,44	0,0012238	0,06246	16,01	1025,3	2803	1778	2,679	6,161

Продолжение таблице XIII

								1 ' '	тислице тип
Рв	t в °С	<i>Э</i> ′в	Э ["] в	$p^{"}$ в	ĺв	<i>l</i> "в	<i>r</i> в	S B	<i>S</i> B
бар	i b C	$M^3/\kappa 2$	м³/кг	кг / м ³	кДж/кг	кДж/кг	кДж/кг	кДж/(кг град)	кДж/(кг град)
34	240,88	0,001231	0,05875	17,02	1041,9	2803	1761	2,71	6,137
36	244,16	0,001238	0,05543	18,04	1057,5	2802	1745	2,74	6,113
38	247,31	0,001245	0,05246	19,06	1072,7	2802	1729	2,769	6,091
40	250,33	0,001252	0,04977	20,09	1087,5	2801	1713	2,796	6,070
42	253,24	0,0012588	0,04732	21,13	1101,7	2800	1698	2,823	6,49
44	256,05	0,0012656	0,04508	22,18	1115,3	2798	1683	2,849	6,029
46	258,75	0,0012724	0,04305	23,23	1128,8	2797	1668	2,874	6,010
48	261,37	0,001279	0,04118	24,29	1141,8	2796	1654	2,898	5,991
50	263,91	0,0012857	0,03944	25,35	1154,4	2794	1640	2,921	5,973
55	269,94	0,0013021	0,03546	28,06	1184,9	2790	1604,6	2,976	5,930
60	275,56	0,013185	0.03243	30,84	1213,9	2785	1570,8	3,027	5,890
65	280,83	0,001335	0,02973	33,64	1241,3	2 779	1537,5	3,076	5,851

70	285,80	0,0013510	0,02737	36,54	1267,4	2 772	1504,9	3,122	5,814
75	290,50	0,0013673	0,02532	39,49	1292,7	2 766	1472,8	3,166	5,779
80	294,98	0,0013838	0,02352	42,52	1317,0	2 758	1441,1	3,208	5,745
85	299,24	0,0014005	0,02192	45,62	1340,8	2 751	1409,8	3,248	5,711
90	303,32	0,0014174	0,02048	48,83	1363,7	2 743	1379,3	3,287	5,678
95	307,22	0,0014345	0.01919	52,11	1385,9	2 734	1348,4	3,324	5,646
100	310,96	0,0014521	0,01803	55,46	1407,7	2 725	1317,0	3,360	5,615
110	318,04	0,001489	0,01598	62,58	1450,2	2 705	1255,4	3,430	5,553
120	324,63	0,001527	0,01426	70,13	1491,1	2 685	1193,5	3,496	5,492
130	330,81	0,001567	0.01277	78,30	1531,5	2 662	1130,8	3,561	5,432
140	336,63	0,001611	0,01149	87,03	1570,8	2 638	1066,9	3,623	5,372
150	342,11	0,001658	0,01035	96,62	1610	2 611	1001,1	3,684	5,310
160	347,32	0,001710	0,009318	107,3	1650	2 582	932,0	3,746	5,247
170	352,26	0,001768	0,008382	119,3	1690	2 548	858,3	3,807	5,177
180	356,96	0,001837	0,007504	133,2	1732	2 510	778,2	3,871	5,107
190	361,44	0,001921	0,00668	149,7	1776	2 466	690	3,938	5,027
200	365,71	0,00204	0,00585	170,9	1827	2 410	583	4,015	4,928
210	369,79	0,00221	0,00498	200,7	1888	2 336	448	4,108	4,803
220	373,7	0,00273	0,00367	272,5	2016	2 168	152	4,303	4,591

ТАБЛИЦА XIV

ВОДА И ПЕРЕГРЕТЫЙ ВОДЯНОЙ ПАР

Параметры даны в единицах системы СИ (числа слева от ступенчатой линии относятся к воде)

D							1	1			1
Р в бар	t B °C	20	40	60	80	100	120	140	160	180	200
	v	0,0010018	36,12	38,45	40,75	43,07	45,39	47,69	50,01	52,31	54,63
0,04	i	83,7	2574	2612	2650	2688	2726	2764	2803	2841	2880
	S	0,2964	8,537	8,651	8,762	8,867	8,966	9,06	9,15	9,238	9,321
	v	0,0010018	0,0010079	19,19	20,34	21,5	22,66	23,82	24,97	26,13	27,29
0,08	i	83,7	167,5	2612	2650	2688	2726	2764	2802	2841	2880
	S	0,2964	0,5715	8,331	8,441	8,546	8,645	8,74	8,83	8,917	9
	v	0,0010018	0,0010079	15,35	16,27	17,2	18,13	19,06	19,98	20,9	21,83
0,1	i	83,7	167,5	2611	2649	2688	2726	2764	2802	2841	2879
	S	0,2964	0,5715	8,227	8,337	8,442	8,542	8,636	8,727	8,814	8,897
	V	0,0010018	0,0010079	12,78	13,55	14,33	15,1	15,87	16,64	17,42	18,19
0,12	i	83,7	167,5	2611	2649	2687	2725	2764	2802	2841	2879
	S	0,2964	0,5715	8,143	8,253	8,358	8,457	8,552	8,643	8,73	8,813
	v	0,0010018	0,0010079	10,95	11,61	12,27	12,94	13,6	14,26	14,92	15,58
0,14	i	83,7	167,5	2611	2649	2687	2725	2763	2802	2840	2879
	S	0,2964	0,5715	8,071	8,181	8,287	8,386	8,481	8,572	8,659	8,742
	v	0,0010018	0,0010079	9,573	10,16	10,74	11,32	11,899	12,478	13,057	13,635
0,16	i	83,7	167,5	2610	2649	2687	2725	2,763	2802	2840	2879
	S	0,2964	0,5715	8,009	8,12	8,225	8,324	8,419	8,51	8,597	8,68
	v	0,0010018	0,0010079	0,0010171	8,119	8,584	9,049	9,513	9,977	10,441	10,905
0,2	i	83,7	167,5	251,1	2648	2687	2725	2763	2801	2840	2879
	S	0,2964	0,5715	0,8307	8,015	8,12	8,22	8,315	8,406	8,493	8,576
	v	0,0010018	0,0010079	0,0010171	5,4	5,713	6,025	6,335	6,645	6,955	7,264
0,3	i	83,7	167,5	251,1	2646	2685	2724	2762	2801	2839	2878
	S	0,2964	0,5715	0,8307	7,825	7,931	8,031	8,126	8,217	8,304	8,388
	v	0,0010018	0,0010079	0,0010171	0,001029	1,695	1,795	1,889	1,984	2,078	2,172
1	i	83,9	167,5	251,1	334,9	2676	2717	2757	2796	2835	2875
	S	0,2964	0,5715	0,8307	1,0748	7,361	7,465	7,562	7,654	7,743	7,828
	v	0,0010018	0,0010079	0,0010171	0,001029	0,0010434	1,491	1,572	1,65	1,729	1,807
1,2	i	83,9	167,5	251,1	334,9	419	2715	2755	2795	2834	2874
	S	0,2964	0,5715	0,8307	1,0748	1,3067	7,376	7,475	7,568	7,657	7,742

Продолжение таблице XIV

									родолже		
Р в ба	<i>t</i> В о	20	40	60	80	100	120	140	160	180	200
p	С										
	v	0,00100 15	0,00100 76	0,00101 68	0,0010 29	0,00104	0,0010	0,0010	0,3167	0,3348	0,352
6	i	84,3	167,9	251,5	335,2	419,1	503,7	589,1	2759	2805	2849
	S	0,2964	0,7516	0,8302	1,0744	1,3062	1,5265	1,738	6,767	6,869	6,963
		0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011		
8	V	15	76	67	29	31	6	8	02	0,2473	0,2609
	i	84,5	168,1	251,7	335,3	419,2	503,8	589,1	675,3	2792	2839
	S	0,2962	0,5714	0,83	1,0742	1,306	1,5263	1,737	1,941	6,715	6,814
		0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011	0,1949	0.206
10	V	14	75	66	29	3	6	79	02	0,1949	0,206
10	i	84,7	168,3	251,8	335,4	419,3	503,9	589,2	675,4	2778	2827
	S	0,296	0,5712	0,8298	1,074	1,3058	1,5261	1,737	1,941	6,588	6,692
		0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011		
	V	13	74	65	28	29	6	79	02	0,1645	0,1693
12	i	84,9	168,5	251,9	335,5	419,4	504	589,3	675,5	279	2816
	S	0,2959	0,5711	0,8297	1,0738	1,3056	1,5259	1,737	1,94	6,534	6,588
	3	0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011	0,00112	0,300
	v	12		64	28	27	6	79	0,0011		0,1429
14			73				-			71	2002
	i	85,1	168,7	252,1	335,7	419,6	504,2	589,5	675,7	763,2	2803
	S	0,2958	0,571	0,8296	1,0736	1,3054	1,5257	1,736	1,94	2,137	6,497
	v	0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011	0,00112	0,00115
16		11	72	63	28	26	6	79	01	7	65
	i	85,3	168,8	252,2	335,8	419,7	504,3	589,6	675,7	763,3	852,4
	S	0,2958	0,571	0,8296	1,0735	1,3052	1,5256	1,736	1,94	2,137	2,329
	v	0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011	0,00112	0,00115
18	•	1	71	62	28	25	59	79	01	68	62
10	i	85,5	169	252,4	336	419,9	504,5	589,8	675,8	763,2	852,4
	S	0,2957	0,5709	0,8295	1,0733	1,305	1,5254	1,736	1,939	2,136	2,328
		0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010	0,0011	0,00112	0,00115
20	V	09	7	61	28	24	59	79	01	67	61
20	i	85,7	169,2	252,6	336,2	420,1	504,7	589,9	675,9	763,2	852,4
	S	0,2957	0,5708	0,8294	1,0731	1,3048	1,5252	1,736	1,939	2,136	2,328
		0,00100	0,00100	0,00101	0,0010	0,00104	0,0010	0,0010		0,00112	0,00115
20	V	04	65	57	28	19	59	78	0,0011	58	51
30	i	86,7	170,1	253,5	337	420,9	505,4	590,6	676,4	763,7	852,6
	s	0,2956	0,5707	0,829	1,0726	1,3038	1,5244	1,735	1,938	2,134	2,326
		0,00098	0,00100	0,00101	0,0010	0,00103	0,0010	0,0010	0,0010	0,00112	0,00115
	V	3	43	34	25	98	56	75	97	2	04
80	i	91,3	174,6	257,8	341,2	424,9	509,1	593,9	679,6	766,7	855
	S	0,2943	0,5686	0,826	1,0689	1,2996	1,5198	1,73	1,931	2,126	2,317
	3	0,2743	0,5000	0,020	1,0009	1,2/90	1,5170	1,73	1,731	2,120	2,317

_ n	. 1		I		ı	<u> </u>		I	ı	1	1
P	t										
6	B o	20	40	60	80	100	120	140	160	180	200
ба											
p	С										
	v	0,00099	0,00100	0,00101	0,0010	0,00103	0,0010	0,0010	0,0010	0,00112	0,00114
90		78	38	29	25	93	56	75	97	13	96
	i	92,3	175,5	258,7	342,1	425,7	509,8	594,6	680,3	767,4	855,5
	S	0,2941	0,5681	0,8253	1,0682	1,2988	1,5189	1,729	1,93	2,125	2,316
	v	0,00099	0,00100	0,00101	0,0010	0,00103	0,0010	0,0010	0,0010	0,00112	0,00114
10	•	75	31	25	25	86	55	74	96	01	82
0	i	93,2	176,9	259,6	342,9	426,5	510,5	595,3	681	768	856
	S	0,2939	0,5674	0,8247	1,0676	1,2982	1,5182	1,728	1,929	2,123	2,314
	v	0,00099	0,00100	0,00101	0,0010	0,00103	0,0010	0,0010	0,0010	0,00111	0,00116
12	V	65	24	16	24	79	54	73	95	89	22
0	i	95,1	178,2	261,4	344,6	428,1	512	596,7	682,4	769,1	901,5
	S	0,2935	0,5668	0,8236	1,0662	1,2967	1,5165	1,727	1,927	2,121	2,404
		0,00099	0,00100	0,00101	0,0010	0,00103	0,0010	0,0010	0,0010	0,00111	0,00114
13	V	61	2	12	23	73	54	73	94	82	58
0	i	96	179	262,2	345,4	428,9	512,7	597,4	683	769,7	857,4
	S	0,2931	0,5664	0,823	1,0655	1,2959	1,5156	1,726	1,926	2,119	2,309
		0,00099	0,00100	0,00101	0,0010	0,00103	0,0010	0,0010	0,0010	0,00111	0,00114
14	V	57	16	08	23	68	53	72	93	74	48
0	i	96,9	179,9	263	346,2	429,6	513,4	598	683,6	770,2	857,9
	S	0,293	0,566	0,8224	1,0648	1,2951	1,5148	1,724	1,925	2,118	2,308
		0,00099	0,00100	0,00100	0,0010	0,00103	0,0010	0,0010	0,0010	0,00111	0,00114
16	V	48	07	99	22	59	52	71	92	57	3
0	i	98,9	181,7	264,7	347,9	431,2	514,9	599,4	684,9	771,3	858,8
	S	0,2925	0,5653	0,8212	1,0634	1,2937	1,5131	1,722	1,922	2,116	2,305
		0,00099	0,00099	0,00100	0,0010	0,00103	0,0010	0,0010	0,0010	0,00110	0,00113
24	V	12	73	65	18	2	48	66	86	95	57
0	i	106,4	188,8	271,5	354,3	437,2	520,8	604,9	689,9	775,7	862,6
	S	0,2911	0,5625	0,8169	1,0582	1,2881	1,5062	1,715	1,915	2,108	2,295
		0,00098	0,00099	0,00100	0,0010	0,00102	0,0010	0,0010	0,0010	0,00110	0,00113
30	V	86	49	41	16	93	45	63	83	5	05
0	i	112	194,1	276,5	359,1	441,9	525,1	609	693,6	779,1	865,4
	S	0,2902	0,5603	0,8140	1,0545	1,2834	1,5024	1,709	1,908	2,100	2,287
	5	0,2702	0,000	5,0110	1,00 10	1,2001	1,0021	·		<u>1 2,100</u> ение табл	

Продолжение таблице XIV

P в бар	<i>t</i> в °С	220	240	260	280	300	350	400	450	500	600
	V	56,93	59,24	61,56	63,87	66,18	71,96	77,73	85,31	89,28	100,84
0,04	i	2918	2958	2997	3037	3077	3177	3280	3384	3490	3707
	S	9,402	9,479	9,554	9,627	9,698	9,866	10,024	10,174	10,317	10,585
	V	28,44	29,6	30,75	31,9	33,06	35,94	38,84	41,72	44,61	50,38
0,08	i	2918	2957	2997	3037	3077	3177	3280	3384	3490	3707
	S	9,081	9,159	9,234	9,306	9,377	9,546	9,704	9,854	9,997	10,265
	V	22,76	23,68	24,6	2553	26,46	28,76	31,08	33,39	35,7	40,32
0,1	i	2918	2957	2997	3037	3077	3177	3280	3384	3490	3707
	S	8,978	9,056	9,131	9,203	9,274	9,443	9,601	9,751	9,895	10,162
	V	18,96	19,73	20,5	21,27	22,04	23,96	25,89	27,82	29,74	33,6
0,12	i	2918	2957	2996	3036	2077	3177	3280	3384	3490	3707
	S	8,894	8,972	9,947	9,119	9,19	9,359	9,517	9,667	9,81	10,078

0,14	V	16,24	16,9	17,56	18,22	18,88	20,53	22,18	29,83	25,49	28,79
	i	2918	29,57	2997	3037	3077	3177	3280	3384	3490	3707
	S	8,823	8,9	8,975	9,048	9,119	9,288	9,446	9,596	9,739	10,007
	V	14,213	14,79	15,367	15,943	16,52	17,96	19,41	20,85	22,29	25,18
0,16	i	2918	2957	2997	3037	3077	3177	3280	3384	3490	3707
	S	8,761	8,838	8,913	8,986	9,057	9,226	9,384	9,534	9,678	9,945
	V	11,369	11,832	12,297	12,758	13,22	14,376	15,53	16,68	17,82	20,15
0,2	i	2918	2957	2996	3036	3077	3177	3280	3384	3490	3707
	S	8,657	8,735	8,81	8,883	8,954	9,123	9,281	9,431	9,575	9,842
	V	7,573	7,882	8,191	8,5	8,809	9,58	10,351	11,121	11,891	13,43
0,3	i	2917	2956	2996	3036	3076	3177	3280	3384	3490	3707
	S	8,469	8,547	8,622	8,695	8,766	8,935	9,093	9,244	9,388	9,655
1	V	2,266	2,359	2,452	2,545	2,638	2,871	3,102	3,334	3,565	4,028
	i	2914	2954	2993	3033	3074	3175	3278	3382	3488	3706
	S	7,91	7,988	8,064	8,139	8,211	8,381	8,541	8,69	8,333	9,097

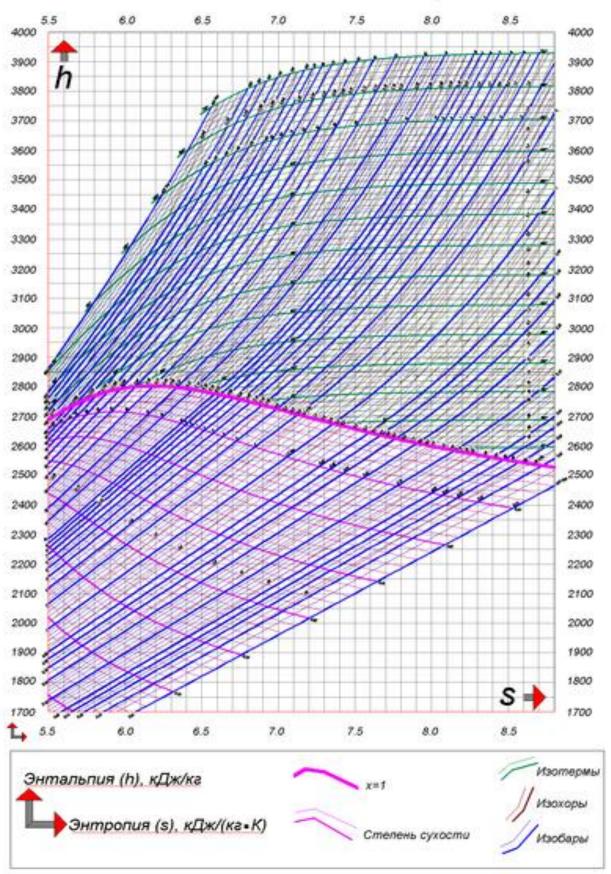
Продолжение таблице XIV

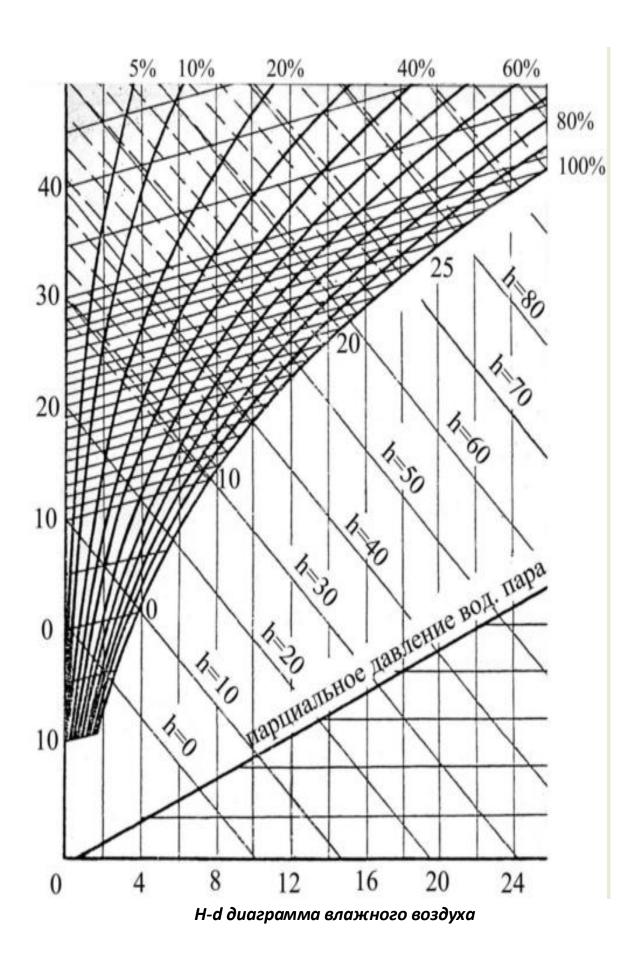
		The desiment and the state of t									
P в бар	<i>t</i> в °С	220	240	260	280	300	350	400	450	500	600
	V	1,886	1,964	2,042	2,12	2,197	2,391	2,584	2,777	2,97	3,357
1,2	i	2913	2953	2993	3033	3073	3174	3278	3382	3488	3705
	S	7,824	7903	7,979	8,053	8,126	8,296	8,456	8,606	8,749	9,013
	V	0,3688	0,3855	0,4019	0,4181	0,4342	0,4741	0,5136	0,5528	0,5919	0,6697
6	i	28,91	2933	2975	3017	3059	3164	3270	3376	3483	3701
	S	7,051	7,135	7,215	7,292	7,366	7,541	7,704	7,857	8,001	8,266
	v	0,2739	0,2867	0,2993	0,3118	0,324	0,3542	0,3842	0,4137	0,4432	0,5018
8	i	2883	2926	2969	3011	3054	3160	3267	3373	3481	3699
	S	6,905	6,991	7,073	7,151	7,226	7,404	7,568	7,722	7,866	8,132
	V	0,2169	0,2274	0,2377	0,2478	0,2578	0,2822	0,3065	0,3303	0,3539	0,401
10	i	28,74	2918	2962	3005	3048	3156	3263	3370	3479	3698
	S	6,788	6,877	6,961	7,04	7,116	7,296	7,461	7,615	7,761	8,027
	v	0,1788	0,1879	0,1967	0,2054	0,2139	0,2343	0,2547	0,2747	0,2944	0,3339
12	i	2865	2911	2955	2999	3042	3151	3260	3368	3477	3696
	S	6,688	6,78	6,866	6,947	7,025	7,206	7,373	7,529	7,674	7,942
	V	0,1515	0,1596	0,1673	0,1748	0,1823	0,2001	0,2176	0,2349	0,252	0,2858
14	i	2855	2902	2948	2992	3036	3147	3256	3365	3474	3695
	S	6,602	6,697	6,784	6,867	6,945	7,13	7,299	7,455	7,601	7,87
	V	0,1309	0,1382	0,1452	0,1519	0,1585	0,1743	0,1899	0,2051	0,2201	0,2499
16	i	2844	2893	2940	2986	3030	3142	3253	3363	3472	3693
	S	6,524	6,622	6,711	6,796	6,877	7,063	7,233	7,39	7,537	7,806
	V	0,1149	0,1216	0,128	0,1341	0,1401	0,1545	0,1683	0,1819	0,1953	0,2219
18	i	2833	2884	2932	2979	3025	3138	3249	3360	3470	3691
	S	6,452	6,554	6,646	6,732	6,814	7,003	7,175	7,333	7,48	7,75
	V	0,1021	0,1084	0,1143	0,12	0,1255	0,1384	0,1511	0,1634	0,1755	0,1995
20	i	2821	2875	2924	2972	3019	3134	3246	3357	3468	3690
	S	6,385	6,491	6,585	6,674	6,757	6,949	7,122	7,282	7,429	7,701
		•	•	•		•	•		•	ma6 mr	

Продолжение таблице XIV

P в бар	t в °C	220	240	260	280	300	350	400	450	500	600
	V	0,0011891	0,06826	0,07294	0,0772	0,08119	0,09051	0,09929	0,1078	0,1161	0,1325
30	i	943,5	2823	2882	2937	2988	3111	3229	3343	3456	3682
	S	2,514	6,225	6,337	6,438	6,53	6,735	6,916	7,08	7,231	7,506
80	V	0,0011833	0,0012221	0,0012689	0,001328	0,02429	0,03003	0,03438	0,03821	0,04177	0,04844
00	i	945,1	1037,9	1134,4	1235,4	2784	2985	3135	3270	3397	3640

	S	2,504	2,688	2,873	3,059	5,788	6,126	6,358	6,552	6,722	7,019
	V	0,0011822	0,0012207	0,0012669	0,001325	0,0014016	0,02586	0,03001	0,03354	0,0368	0,04285
90	i	945,2	1038,1	1134,2	1234,9	1344,3	2954	3114	3254	3386	3631
	S	2,502	2,686	2,87	3,056	3,249	6,033	6,28	6,481	6,656	6,957
	V	0,0011805	0,0012185	0,001265	0,001322	0,001397	0,02247	0,02646	0,02979	0,03281	0,03837
100	i	945,8	1038,3	1134,1	1234,5	1342,2	2920	3093	3239	3372	3621
	S	2,5	2,684	2,868	3,053	3,244	5,94	6,207	6,416	6,596	6,901
	V	0,0011788	0,0012164	0,0012612	0,001316	0,0013886	0,01726	0,02113	0,2414	0,02681	0,03163
120	i	946,6	1038,7	1133,9	1233,7	1340	2844	3049	3206	3347	3603
	S	2,497	2,68	2,863	3,046	3,235	5,755	6,071	6,298	6,487	6,803
	V	0,0011777	0,001215	0,0012593	0,001314	0,0011385	0,01514	0,01905	0,02197	0,0245	0,02903
130	i	946,9	1038,9	1133,8	1233,3	1339	2799	3026	3189	3334	3594
	S	2,495	4,678	2,86	3,043	3,23	5,657	6,006	6,243	6,438	6,758
	V	0,0011766	0,0012136	0,0012575	0,001311	0,0013808	0,01325	0,01726	0,0201	0,02252	0,02683
140	i	947,3	1039,1	1133,8	1232,9	1338	2750	3000	3172	3321	3585
	S	2,493	2,676	2,858	3,04	3,226	5,556	5,942	6,19	6,39	6,716
	V	0,0011744	0,0012109	0,0012539	0,001306	0,0013735	0,00978	0,01429	0,01704	0,0193	0,02322
160	i	948	1039,5	1133,7	1232,2	1336,2	2612	2945	3137	3294	3567
	S	2,489	2,672	2,853	3,035	3,218	5,302	5,816	6,09	6,303	6,64
	V	0,0011658	0,0012004	0,0012404	0,001288	0,0013475	0,001612	0,00676	0,00977	0,01174	0,01478
240	i	950,9	1041,3	1134	1230,3	1331,2	1625	2638	2971	3174	3493
	S	2,477	2,657	2,835	3,011	3,19	3,684	5,236	5,723	5,999	6,394
	V	0,0011597	0,0011931	0,0012313	0,001276	0,0013311	0,001556	0,00283	0,00672	0,00869	0,01144
300	i	953,3	1042,9	1134,7	1229	1329	1608	2155	2816	3073	3434
	S	2,468	2,647	2,822	2,996	3,171	3,64	4,476	5,446	5,799	6,242


ТАБЛИЦА XV


НАСЫЩЕННИЙ ВОДЯНОЙ ПАР (ПО ТЕМПЕРАТУРАМ)

Параметры даны в технической системе единиц

t B	Р в бар	<i>Э</i> ′ _в	<i>9</i> "в	р"в	<i>l</i> в	<i>l</i> " в	r B	S B	S "в
°C	1 8 0up	м³ / кг	м³/кг	$\kappa \epsilon / m^3$	кДж/кг	кДж/кг	кДж/кг	кДж/(кг град)	кДж/(кг град)
0,01	0,006228	0,0010002	206,3	0,004847	0	597,3	597,3	0	2,1865
5	0,008891	0,0010001	147,2	0,006793	5,03	599,5	594,5	0,0182	2,1554
10	0,012513	0,0010004	106,42	0,009398	10,04	601,7	591,7	0,0361	2,1256
15	0,017377	0,0010010	77,97	0,01282	15,04	603,9	588,9	0,0536	2,0972
20	0,02383	0,0010018	57,84	0,01729	20,04	606,0	586,0	0,0708	2,0699
25	0,03229	0,0010030	43,40	0,02304	25,03	608,2	583,2	0,0877	2,0448
30	0,04325	0,0010044	32,93	0,03037	30,02	610,4	580,4	0,1043	2,0188
35	0,05733	0,0010061	25,24	0,03962	35,01	612,6	577,6	0,1206	1,9948
40	0,07520	0,0010079	19,55	0,0,115	40,1	614,7	574,7	0,1367	1,9719
45	0,09771	0,0010099	15,28	0,06544	45,00	616,8	571,8	0,1525	1,9499
50	0,12578	0,0010121	12,04	0,08306	49,99	619,0	569,0	0,1681	1,9287
55	0,16050	0,0010145	9,578	0,1044	54,98	621,1	566,1	0,1834	1,9084
60	0,2031	0,0010171	7,678	0,1302	59,98	623,2	563,2	0,1985	1,8889
65	0,2550	0,0010199	6,201	0,1613	64,98	625,2	560,2	0,2134	1,8701
70	0,3178	0,0010228	5,045	0,1982	69,98	627,3	557,3	0,2281	1,8521
75	0,3931	0,0010258	4,133	0,2420	74,99	629,3	554,3	0,2426	1,8347
80	0,4829	0,0010290	3,408	0,2934	80,00	631,3	551,3	0,2568	1,8180
85	0,5894	0,0010324	2,828	0,3536	85,02	633,3	548,3	0,2709	1,8018
90	0,7149	0,0010359	2,361	0,4235	90,04	635,2	545,2	0,2848	1,7862
95	0,8619	0,0010396	1,982	0,5045	95,07	637,2	542,1	0,2986	1,7712
100	1,0332	0,0010435	1,673	0,5977	100,10	639,1	539,0	0,3122	1,7566
105	1,2318	0,0010474	1,419	0,7047	105,14	640,9	535,8	0,3256	1,7426
110	1,4609	0,0010515	1,210	0,8264	110,19	642,8	532,6	0,3388	1,7289
115	1,7239	0,0010558	1,036	0,9652	115,25	644,6	529,4	0,3519	1,7157
120	2,0245	0,0010603	0,8917	1,121	120,3	646,4	526,1	0,3649	1,7029
125	2,3666	0,0010649	0,7704	1,298	125,4	648,1	522,7	0,3777	1,69,05
130	2,7544	0,0010697	0,6683	1,496	130,5	649,8	519,3	0,3904	1,6784
135	3,192	0,0010747	0,5820	1,718	135,6	651,4	515,8	0,4029	1,6667
140	4,237	0,0010798	0,5087	1,966	140,7	653,0	512,3	0,4154	1,6553

h, s - диаграмма воды и водяного пара

Использованная литература

- 1. Т.Н. Андрианова и др. Сборник задач по технической термодинамике. Учебный пособие. Издательство МЭИ, 2003 гг. 56 стр.
- 2. В.Н. Луканин. и др. Теплотехника. Учебник для студентов технических специальностей. М.: «Высшая школа», Изд. 5-е. 2005 г
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен. Учебное пособие, 2е изд.исп.и доп. М.: Издательство МЭИ, 2005. 550 с.
- 4. Б.Х.Драганов и др. Теплотехника и применение теплоты в сельском хозяйстве. М.: «Агропромиздат», 1990 г.
- 5. Г.П. Панкратов. Сборник задач по теплотехнике: Учеб. пособие для неэнергетич. спец. вузов. 2-е изд., и доп-М.: Высш. шк. 1986 г.
- 6. О.М.Рабинович. Сборник задач по технической термодинамике. «Машиностроение», 1973 г.
- 7. Т.Худойбердиев, Б.Шаймарданов, К.Усмонов. Иссиклик техникаси фанидан масалалар тўплами. Ўкувкўлланма. ТИКХММИ. 138 бТ.2018 й
- 8. T.S.Xudoyberdiev, B.P.Shaymardanov, R.A.Abduraxmonov, A.N.Xudoyorov, B.R.Boltaboyev. Issiqlik texnikasi asoslari (darslik). T.: "Cho'lpon" nashriyoti, 2008. 216 b.
- 9. Усмонов К.Э. Методические указания к выполнению практических занятий по предмету «Теплотехника» Т-2015.-70 с.
- 10. R.A.Zohidov, M.M.Alimova, Sh.S.Mavjudova. Issiqlik texnikasi (darslik). T.: "O'zbekiston faylasuflari milliy jamiyati" nashriyoti, 2010. 200 b.
- 11. Нурматов Ж., Н.А.Халилов, Ў.Қ.Толипов. Иссиклик техникаси (ўкув қўлланма) Т.: "Ўкитувчи" нашриёти, 1998. 256 б.
- 12. Мехеев М.А. Основы теплопередачи. М-1956. 392 стр.

Оглавление

I.	Введение	5
II.	Параметры состояния газа	6
III.	Уравнение состояния	8
IV.	Газовые смеси	10
V.	Теплоемкость газов.	15
V.1.	Основные газовые процессы	20
V. 2.	Изохорный процесс	21
V. 3.	Изобарный процесс	22
V. 4.	Изотермический процесс	23
V. 5.	Адиабатный процесс	25
VI.	Политропный процесс	26
VII.	Теоретические циклы поршневых двигателей внутреннего	
	сгорания	31
VIII.	Поршневые компрессоры	36
IX.	Истечение газов и паров	40
IX.1.	Воляной пар	45
IX.2.	Сухой насыщенный пар.	46
IX.3.	Влажный насыщенный пар	46
IX.4.	Перегретый пар	47
X.	Энтропия пара	49
XI.	Циклы паросиловых установок	52
XII.	Теплопередача	60
XIII.	Теплоотдача при вынужденном продольном обтекании плоской	
	поверхности	58
XIV.	Теплопередача через плоскую стенку	69
XV.	Теплопередача через цилиндрическую стенку	74
XVI.	Теплопередача через шаровую плоскую стенку	77
XVII.	Теплопередача через ребристую стенку	78
XVII.1.	Твердые, жидкие и газообразные топлива	83
XVII.2.	Состав топлива	86
XVII.3.	Характеристика топлива	86
	Масса продуктов сгорания	90
	Приложения	93
	Использованная литература	116

ИМОМОВ ШАВКАТ ЖАХОНОВИЧ НУРИТОВ ИКРОМ РАЖАБОВИЧ УСМОНОВ КАМОЛИДДИН ЭШКУЛОВИЧ

СБОРНИК ЗАДАЧ ПО ОСНОВЫ ТЕРМОДИНАМИКИ И ТЕПЛОПЕРЕДАЧИ

Редактор: Ташходжаева Н.

Подписано в печать: 28.12.2020 год. Формат бумаги 60×84 - 1/16 объем 7,25. п.л. Тираж 15. Заказ № 000789. Отпечатано в типографии ТИИИМСХ Ташкент-100000, ул, Кары — Ниязова-39

ДЛЯ ЗАМЕТОК
